FR09 Dec. 7-10,2009, Kyoto

Fast Reactor Fuel Development in Japan

Tomoyasu MIZUNO

mizuno.tomoyasu@jaea.go.jp

Japan Atomic Energy Agency, Advanced Nuclear System Research and Development Directorate

FR Cycle Development Program in JAPAN

Driver fuels of Jovo and Monju

			Joyo (MK-III)	Monju
Sub-assembly				
	Overall length	(m)	2.97	4.2
	Distance between flat	(mm)	78.5	110.6
	Flow rate range	(kg/s)	6.8 to 8.5	14 to 21
Pin				
	Overall length	(mm)	1533	2813
	Fuel column length	(mm)	500	930
	Diameter (Inner/outer)	(mm)	4.8/5.5	5.56/6.5
	Spacer		wire	wire
	Triangular pitch	(mm)	6.47	7.87
	Number of pins		127	169
Pellet				
	Туре		solid	solid
	Diameter x Height	(mm)	4.63 x 9	5.4 x 8
	Smeared density	(% TD)	87	80

Joyo and Monju

➢ Joyo has been being accumulating irradiation test data

Monju is expected to demonstrate high burnup fuel in S/A scale and core scale

Joyo and Monju

Joyo Achievement : Material Irradiation

Main Features of JSFR

- 1,500 MWe large-scale loop-type SFR with MOX fuel,

- Innovative technologies for enhancement of reactor core safety, high economic competitiveness and countermeasures against specific issues of sodium

Japan Sodium-cooled Fast Reactor (JSFR)

Main Features of Fuel Cycle System

- Low decontaminated TRU fuel -> Simplify process without U/Pu partitioning and purification

- Adjusting Pu content in solution \rightarrow Reduction of powder treatment processes

Simplified Pelletizing Process

* Pu Enrichment Adjustment in Solution

Fuels for SFR (1/2)

- > Oxide fuel (Reference) and metal fuel (alternative)
- Homogeneous TRU recycling fuel composition ex. :fast reactor core equilibrium composition [oxide] Pu238/239/240/241/242/ Np237/Am241/243/Cm244 =1.1/54.1/32.1/4.3/3.9/ 0.5/2.0/1.0/1.0 (others : compositions of LWR spent fuels incl. LWR-MOX)
- High burnup fuel (ave. 150GWd/t : 200-250 GWd/t, 250 dpa at max.)
- ≻ High core outlet temperature (550 deg.C)
- Simplified Pelletizing Fuel Fabrication for oxide fuel

Fuels for SFR (2/2)

Fuels

- Oxide fuel : MA bearing (<~5%HM), Annular pellet, Low O/M, 82%TD of smeared density
- Metal fuel : MA bearing, U-TRU-Zr 75%TD or less of smeared density
- Core material (Swelling resistant and high strength)
 - Cladding : ODS ferritic steel
 - S/A duct : PNC-FMS(ferritic martensitic steel)

> Cladding maximum temperature

- Oxide fuel : 700 deg.C (mid-wall)
- Metal fuel : 650 deg.C (inner surface)
 - [due to metal fuel-cladding compatibility]

Future Evolution of SFR driver fuel

	Current	Interim	Future	
Burnup	80 GWd/t	100-150 GWd/t	150GWd/t	
Core materials	PNC-316	PNC-316 Advanced austenitic ODS / PNC-FMS	ODS clad. PNC-FMS S/A duct	
Fuel pin diameter	6.5mm	8-10mm	10.4mm	
Fuel pelletsSolid85%TD		Solid / Annular High density	Annular 95%TD	
Fuel compositions	(U,Pu)+decay Am Pu from LWR	(U,Pu)+decay Am Pu from HB-LWR and LWR-MOX	Pu/TRU from HB-LWR and LWR-MOX FR recycle FR equilibrium	
Fuel fabrication technologiesConventional pelletizing(S pelletizing)		(Simplified pelletizing)	Simplified pelletizing	

Irradiation tests

- ODS irradiation (material, fuel pin, fuel pin bundle)
- PNC-FMS irradiation (material, fuel pin, SA duct)
- Large diameter fuel pin
- Simplified process fuel pellets
- Annular fuel PTM (PTM=Power-To-Melt)
- Irradiated fuel PTM
- MA bearing oxide fuel (Am,Np-bearing, Am+Np+Cm bearing)
- Transient tests (reactor tests and hot cell tests)
- (Burnup extension of current fuels)

etc.

xxxx : already started in Joyo

Fast Reactor Cycle Technology Development Project * : Includes simplified pelletizing fuel 13

Basic scheme of SFR fuel development

MA bearing oxide fuel test in Joyo Current outcomes of Am-1/B11 (5%Am, 2%Am+2%Np)

Radial distribution of Am and Pu content in Np/Am-MOX

ODS Fuel Pin Irradiation Test in BOR-60

Joyo test = under preparation

Objectives

- To attain the cumulative damage fraction (CDF) value similar to the end of life condition
- To obtain the inner surface corrosion (FCCI) data at the higher temperature

Results

- Irradiation results of CDF up to 0.3 were achieved without fuel pin failure
- Maximum corrosion depth observed was $10 \ \mu \ m$

International Collaborations CEA/DOE/JAEA GACID Project

- Objective: to demonstrate, using Joyo and Monju, that FR's can transmute MA's (Np/Am/Cm) and thereby reduce the concerns of HL radioactive wastes and proliferation risks.
- > A phased approach in three steps.
- Material properties and irradiation behavior are also studied and investigated.

GACID overall schedule

Joyo

Joyo

Planning

Monju

Test fuel

fabrication

Moniu

Step-1 Np/Am pin irrad. test

Step-2

Step-3

irrad. test

Np/Am/Cm

Np/Am/Cm pin

bundle irrad. test

U-Pu-Zr Metallic Fuel Pin Irradiation in Joyo

High clad. temp. = fuel-clad. Compatibility evaluation
High smear density = FCMI evaluation in a tolerance limit
Begin with ferritic-martensitic steel clad.
To be extended to ODS steel clad.

Pin No.	Slug OD [mm]	Smear density [%TD]	Peak linear heat rate (target) [W/cm]	Clad. temp. (clad. inner surface) [°C]	Peak burnup [GWd/t]
#1	5.05	77.4	>450	650	30
#2	4.95	74.4	>450	650	30
#3	5.05	77.4	>450	620	80
#4	4.95	74.4	>450	620	80
#5	5.05	77.4	>450	620	>100
#6	4.95	74.4	>450	620	>100

Major parameters of test fuel pins

Alternative

Conclusions

- Fuel development for future fast reactors are in progress as a part of FaCT project in Japan.
- Developmental effort includes irradiation tests, fuel fabrication technology development and out-of-pile studies such as fuel property investigations.
- Future fuels will be realized through Joyo irradiation tests and Monju demonstrations.
- International collaborative effort is also an important part of such activities.

