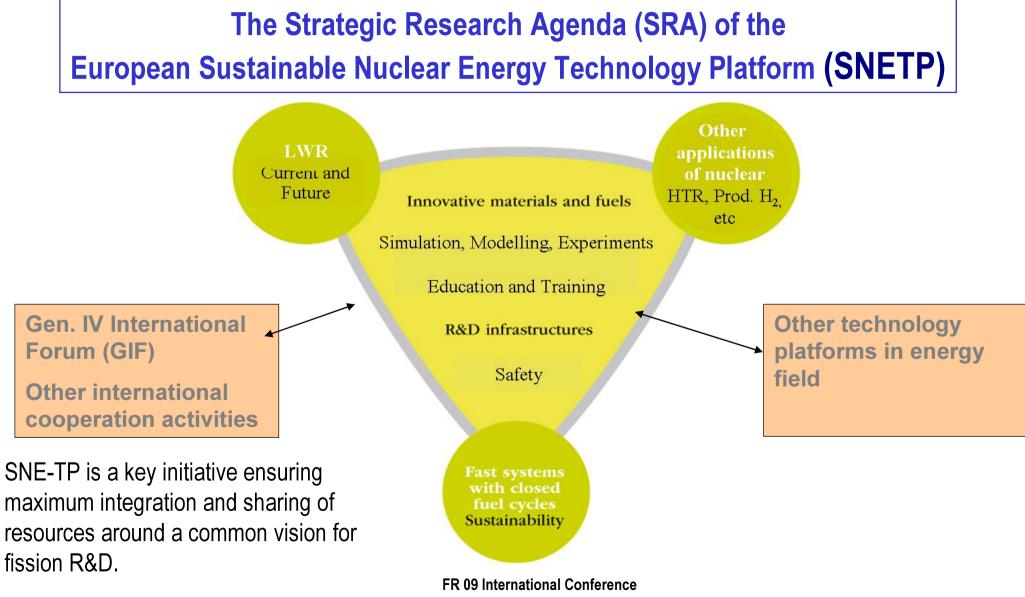


Contribution of EURATOM in Fast Reactor R&D

Dr. Roland Schenkel

Director General Joint Research Centre European Commission



• Fast Reactor development in Europe:

- the Sustainable Nuclear Energy Technology Platform (SNE-TP)
- the Strategic Energy Technology Plan (SET Plan)
- The European Sustainable Nuclear Industrial Initiative (ESNII)
- International collaboration
- Role of EURATOM in support of R&D
- Conclusion

Fast Reactor development in Europe (1)

Kyoto, Japan, 7-11 December 2009

SRA Reactor Technology Road-Maps

- Current and future Light
 Water Reactors
 - Plant life
 Management, material
 ageing issues
 - Advanced modelling tools & intelligent plant monitoring systems

Maintain competitiveness in **fission technologies** Generation IV Fast Neutron Reactors

- Innovative fuels (incl. MAbearing for transmutation) and core performance
- Improved materials
- Advanced instrumentation, in-service inspection systems

Demonstration of a **new** generation (Gen-IV) of fission reactors for increased sustainability Other applications of nuclear energy:

Optimization of reactor design (LWR, HTR, FNR) and heat process applications for production of:

- $-H_2$
- synthetic fuel (2nd gen. biofuels, CtoL)

Nuclear as a **low carbon energy supply** to other industries

New applications

Base load electricity

EU Energy Policy Initiative

March 2008: The «European Strategic Energy Technology Plan» (SET Plan) was endorsed by the European Council

- Need for R&D and Innovation in low carbon energy to implement the EU Energy policy
- Need for more research integration: i.a. European Energy Research Alliance
- Six European initial Industrial Initiatives: Wind, Solar, CCS, Biofuels, Grid, Nuclear Fission
- Communication on the Financing of the SET plan adopted on Oct. 7th, 2009

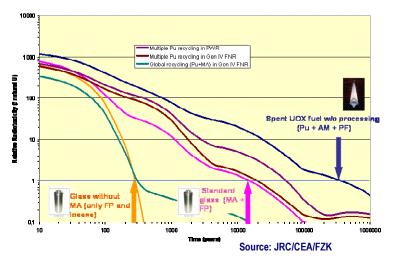
Increased public and private investment needed for the development of low carbon technologies

SET-Plan and Nuclear Fission

- Key EU technology challenges for the next 10 years
 - ... to meet 2020 targets:
 - "Maintain competitiveness in fission technologies, together with longterm waste management solutions"
 - ... to meet 2050 vision:
 - "Complete the preparations for the demonstration of a new generation (Gen-IV) of fission reactors for increased sustainability"
- Task Force launched in 2009 to prepare the first nuclear European Industrial Initiative:
 - <u>"Sustainable nuclear fission initiative</u>: focus on the development of Generation-IV technologies": ESNII (European Sustainable Nuclear Industrial Initiative)

Fast Reactor development in Europe (5)

Why to create an Industrial Initiative on Generation IV Fast Reactor Systems ?


 Fast Neutron Reactors (FNRs) have been operated in the past (including in Europe), but today's safety, operational and competitivity standards require the design of a new generation of fast reactors

Technology	Identified reserves ~4.7 VtU	Total conventional resources ~14.8 MtU	Total conventional resources + phosphates ~36.8 MtU
LWRs once through	85	270	675
Introduction of F3Rs*	4 250	13 500	33 750

Source: NEA Redbook 2008

Uranium resources and expected years of availability

- The main goals are to ensure long-term resources availability (multiplication by a factor of at least 50 of the energy produced by a given amount of uranium), and to increase the waste management efficiency (volume, heat load and toxicity reductions)
- R&D on 4 fast neutron systems is currently being implemented, cordination is ensured through SNETP in Europe and GIF at international level
- A framework for industrial implementation need to be set up

Objective

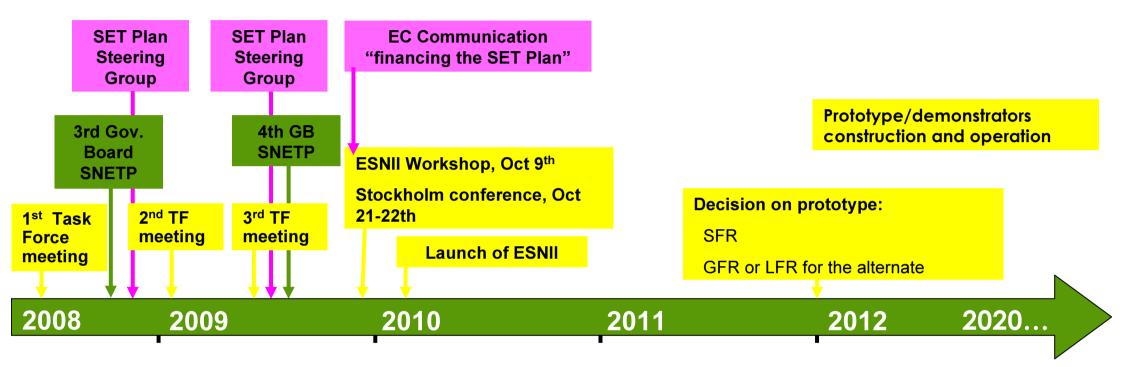
• To demonstrate the sustainability of Generation IV Fast Reactors (exploit full energy potential of uranium and minimization of waste) and its industrial and economic viability to ensure that nuclear energy remains a long-term contributor to the low-carbon economy.

Sector target

• Commercial deployment of Generation IV from 2040 while retaining at least 30% share of EU electricity with an expansion towards cogeneration of process heat for industrial applications

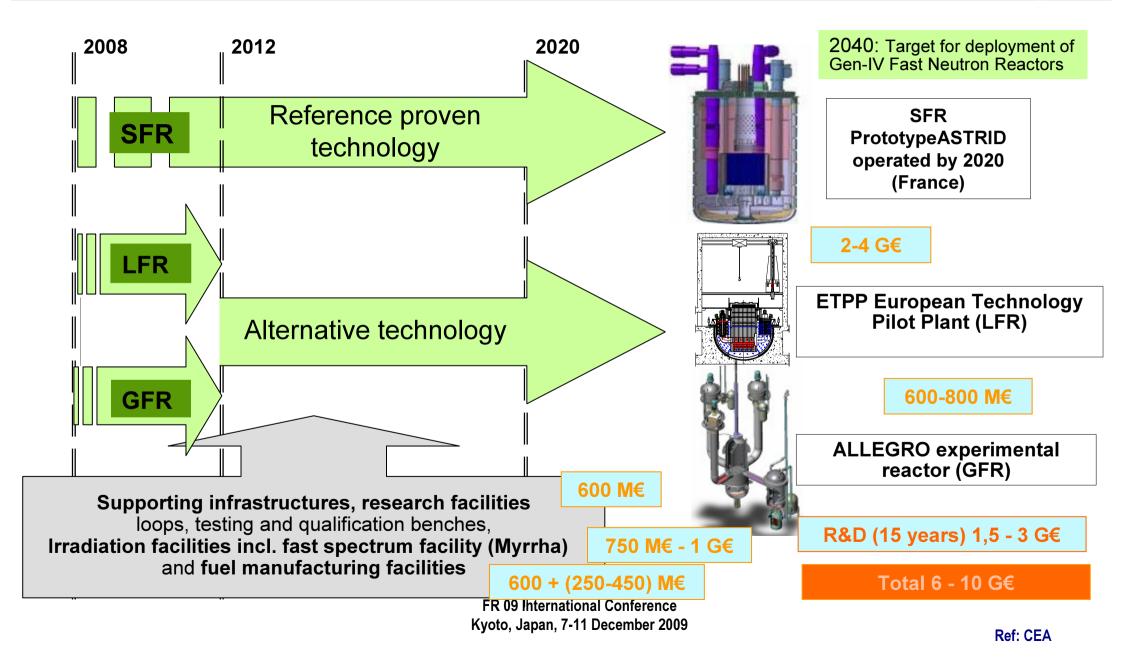
Suggested required investment by the sector

• 6 -10 billion €



– This group is open to new members

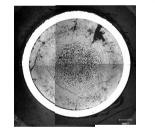
European Sustainable Nuclear Energy Industrial Initiative (3)



Study on financial & legal aspects ESNII supports the preparation of prototype construction

2040: ready for deployment of SFR technology

European Sustainable Nuclear Energy Industrial Initiative (4): Indicative content and cost



EURATOM contribution to Generation IV International Forum: achievements

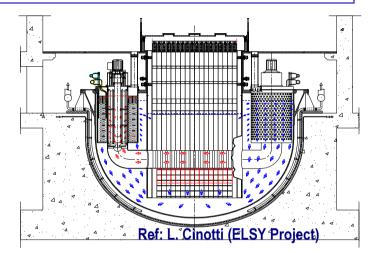
Sodium Fast Reactor

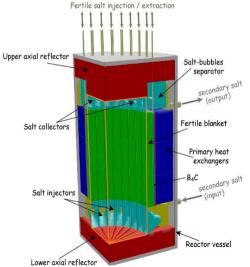
- Launch of a new project (European Sodium Fast Reactor FP7)
- Hot cells analysis of Pu carbide fuels irradiated in Phenix
- Advanced structural materials project (GETMAT-FP7)
- Support to the design of the SFR European prototype

JRC/ITU Pu carbide fuel analysis

Gas Fast Reactor

- Completion of GFR design comparisons (GCFR Project-FP7)
- Minor Actinides oxide and nitride fuel fabrication developments





EURATOM contribution to Generation IV International Forum: achievements

Lead Fast Reactor

- 600 MWth LFR preliminary design (ELSY-FP7)
- Advanced structural materials project (LFR optimisation)

FR 09 International Conference Kyoto, Japan, 7-11 December 2009

Ref: C. Renault

Molten Salt Fast Reactor

- Design of a MSR fast reactor
- MSR fluoride fuels property determinations

International collaboration (3)

Bilateral and Trilateral collaborations (examples)

METAPHIX: CRIEPI-CEA-JRC metallic minor actinides fuels irradiation in Phenix Irradiation completed up to 10 at%, examinations underway

FUTURIX: DOE-CEA-JRC oxide Am CERMET fuel pins irradiation in Phenix Irradiation completed, examination underway

DOE-EURATOM collaboration:


- INERI project on advanced cladding materials welding
- Reserach on nitride fuels

T91 end cap welded with magnetic pulse method

FR 09 International Conference Kyoto, Japan, 7-11 December 2009

CERMET Am, Pu oxide in Mo matrix

Total EURATOM Contributions to fast reactors research: 30 M€/year

- EU Framework Programme Projects (Indirect Actions)
 - Fast Reactor R&D performed by European Consortia (with external contributions)
 - Community funding: generally 50%
- JRC direct contribution
 - JRC contributes to Fast Reactor R&D through its Work Programme
 - Community funding 100%
- **Direct contributions of R&D organisations and/or industry** from EU or Associated Member States from their own funding
 - no Community funding

EURATOM Indirect Actions on Fast Reactors Development

Project	Period	Total budget M€	Topics
ESFR	2009-2012	11.5	SFR design and safety
GCFR	2006-2009	3.6	GFR design and safety
ELSY	2006-2009	6.5	LFR design and safety
ACSEPT	2008-2012	23.8	FR fuel reprocessing
GETMAT	2008-2013	14.0	FR advanced structural materials
F-BRIDGE	2008-2012	10.2	FR innovative fuels research

Total of running projects: 70 M€ over 3-4 years (with 50% community funding) New proposals processed on Lead and Gas Fast Reactors

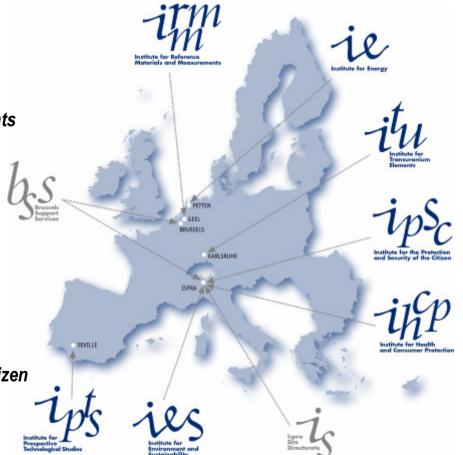
The JRC: providing robust science for policy makers 7 Institutes in 5 Member States

IE - Petten The Netherlands -Institute for Energy

IRMM - Geel Belgium
- Institute for Reference Materials and Measurements

ITU - Karlsruhe Germany - Institute for Transuranium Elements

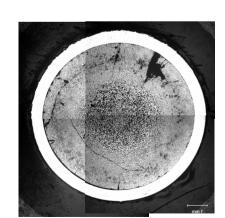
IPSC - IHCP - IES - Ispra Italy

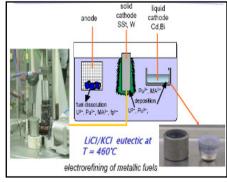


- Institute for Environment and Sustainability
- Institute for Health and Consumer Protection
- Institute for the Protection and Security of the Citizen

IPTS - Seville Spain

- Institute for Prospective Technological Studies




JRC Contribution to Fast Reactors Development

- Involved in research on all 4 fast systems (no detailed design work)
- Focus on safety and security research fields
- Particular research topics (to be described in another paper at this Conference) are:
 - Fuel fabrication and properties including post-irradiation
 - Advanced fuel reprocessing experiments
 - Fuels and structural materials research
 - Reactor design and safety comparisons
 - Proliferation resistance and physical protection evaluations

• JRC is the implementing agent for EURATOM in GIF

Carbide Pu fuel irradiated in Phenix FR

Reprocessing: Aqueous & Pyro

FR 09 International Conference Kyoto, Japan, 7-11 December 2009 Budget: about 10 M€/y

- In Europe, nuclear fission R&D is coordinated through SNETP
- Three R&D pillars have been identified: safety of existing reactors, development of a new generation of fast reactors, heat-related applications of nuclear energy
- Long-term resources availability and reduction of waste hazards favour the development of fast reactors;
- The launch of an European Industrial Initiative will support the construction by 2020 of a sodium- cooled fast neutron reactor in France
- The European Commission, through its EURATOM fission programme, is a major contributor to the R&D programme, either through « Indirect Actions » financed by RTD or by « Direct Actions » implemented in JRC
- The R&D international dimension is of primary importance. This is reflected through the active participation of EURATOM in GIF, and through a number of bilateral collaborations