

December 7 - 11, 2009 Kyoto, Japan

Development of elevated temperature structural design methods to realize compact reactor vessels

Naoto KASAHARA^a, Kenichiro SATO^b, Kazuyuki TSUKIMORI^c and Nobuchika KAWASAKI^c

a Visiting Researcher, JAEA / The University of Tokyo, Tokyo, Japan b Mitsubishi FBR Systems, Inc., Tokyo, Japan c Japan Atomic Energy Agency (JAEA), Ibaraki, Japan

CONTENTS

- Introduction (background)
- Thermal Load Modeling Method
- Inelastic Design Analysis Method
- Elevated Temperature Strength Evaluation Method
- Conclusion

Introduction (Background)

Introduction (Aim of Study)

Compact Reactor Vessel for JSFR

Elimination of Thermal Protection System

Expected failure modes of Reactor Vessels

Thermal loads

Main loads are thermal stresses induced by fluid temperature change at transient operation

Structural response

Elastic plastic creep response under elevated temperature

Failure

Assumed Failure modes during long term operation

Characteristics of thermal transient loads in reactor vessels

Thermal transient load histories of reactor vessels exhibit intermediate stress hold after the maximum peak stress. By changing hypothesis of peak stress hold to consideration of intermediate stress hold for creep damage calculation, accuracy of damage prediction will be much improved.

International Conference on Fast Reactors and Related Fuel Cycles (FR09)

Development of the New Design Method for Reactor Vessels

Thermal Load Modeling Method

Thermal load is a main loading of fast reactors. Thermal transient loads are generated by both thermal-hydraulic and structural phenomena and have many influence parameters.
 New thermal load modeling method is developed based on direct evaluation of relationship between thermal-hydraulic behaviors and thermal stress.

Thermal loads induced by thermal-hydraulic and structural phenomena

Many influence parameters on thermal loads

JAEA

Comparison of thermal load modeling methods

Inelastic Design Analysis Method

Basic policies

O More rational evaluation than conventional methods based on elastic analysis

O Conservative evaluation taking design uncertainty into account

O Limitation of applicable area to ensure conservative results

← General application requires too many parameters which affect on inelastic calculation results

Development of advanced constitutive equations for design

Improvement of models

Simplified model •Stress reverse reset model(MK-SRR) •Multi-linear kinematic hardening model(MK)

Nonlinearity of Stress-Strain relation
Temperature dependency
Non-proportional Multi-axial Behaviors

High-accuracy model • Multi-linear kinematic hardening model(MCP) • Two-surface

model(TCP)

 Cyclic hardening behavior

Application of MK Model and MK-SRR Model

Analysis of Reactor Vessel Model

Strain behaviour by MK-SRR model with various number of multi-linear approximation

Experiments for verification and validation

Uni-axial tests	Basic material properties	to determine parameters (thermal expansion test/ tensile tests/cyclic tests)
	Temperature dependency tests	considering of the preliminary analysis results
Basic structure element tests	Three bar ratcheting test	(two bar ratcheting theory)
	Bi-axial ratcheting tests	considering of the preliminary analysis results
Structure model tests	Cylindrical specimen /movement of temperature distribution	similar phenomenon as the ratcheting in the reactor vessel

Verification of MK Model and MK-SRR Model

Temperature dependency tests

Structural model tests for validation

Measurements: strain on the surface, (creep) fatigue cracks

Measured strain on the outer surface of vessel wall during 200cycle of thermal transient loads

Elevated Temperature Strength Evaluation Method

Creep-fatigue damage evaluation with consideration of following effects

Strain Concentration

Strength tests of reactor vessel models for validation

Objective : Total validation of creep fatigue strength evaluation method by reactor vessel models subjected to simulated design load conditions

Reactor vessel model

Load conditions

Temperatur	600°C			
Thermal stress	1000MPa			
Primary stress	50MPa	30MPa	50MPa	
Hold time	0hr	3hr	3hr	

Inner surface

Outer surface

Observed cracks after 2000cycles (30MPa, 3hr)

Allowable Strain Limit

Accumulate strain is limited within the value which has no impact on fatigue and creep-fatigue strength.

Strength reduction is small in creep-fatigue + ratchet tests compared with fatigue + rachet ones. From the later results, allowable strain limit is determed as 2%.

JAEA

Structural Design Evaluation Method for Reactor Vessels

Conclusions

The Structural Design Evaluation Method for Reactor Vessels of FBRs was proposed with :

Thermal Load Modeling Method

Thermal hydraulic - structure total analysis with experimental design

Inelastic Design Analysis Method

Design evaluation method based on recommended inelastic analysis

Elevated Temperature Strength Evaluation Method

Creep-fatigue damage evaluation method considering intermediate stress hold, aging and strain concentration

Strain limit within negligible effects on creep-fatigue strength