Development of Minor Actinide-Containing Metal Fuels

H. Ohta¹, T. Ogata¹, D. Papaioannou², T. Koyama¹, M. Kurata¹, J.-P. Glatz², and V.V. Rondinella².

Presented by T. Ogata

- ¹: Central Research Institute of Electric Power Industry (CRIEPI),
- ²: European Commission Joint Research Centre, Institute for Transuranium Elements (JRC-ITU).

Background

MA-Containing Metal Fuel Development

- Minor actinides (MA) burnup technology using FR metal fuel cycle is being developed in CRIEPI.
 - Metal fuel FR have some advantages for MA burnup.
 - MA content in recycled fuel is < 1wt% : Metal fuel FR cycle.
 - ~ 2wt% : MA from LWR spent fuels are recycled.
 - > 2wt% : MA from HLLW are recycled.
 - In pyro-processing, MA is recovered with rare-earth (RE) fission products. MA : RE ~ 1 : 1, depending on decontamination specifications.
- Experimental studies on U-Pu-Zr-MA(-RE) alloys have been conducted in cooperation with JRC-ITU.
 - Characterization of U-Pu-Zr-MA-RE alloys,
 - Fuel fabrication for irradiation experiment,
 - Irradiation in fast reactor Phénix,
 - Non-destructive and destructive postirradiation examinations.

Miscibilities among U-Pu-Zr-MA-RE

U-Pu-Zr-MA-RE alloys of different compositions were mixed by arc-melting.

Metallography of CR101/3 alloy: 39U-22Pu-12Zr-15Np-10Am-0.6Ce-1.8Nd

In the alloys of low RE content (≤5%), → RE-rich precipitates (≤30µm) were uniformly dispersed. RE content should be reduced to ≤5%.

Phase Structures of annealed U-Pu-Zr-MA-RE

U-Pu-Zr-MA-RE alloys are annealed and quenched.

FR 2009, Kyoto, Japan, December 9, 2009

Phase transition temperature

Phase transition temperature of U-Pu-Zr(-MA-RE) were measured by dilatometry method.

For all samples,

two distinctive phase transition temperatures at ~580°C & ~630°C

 \rightarrow Insignificant influence of MA and RE addition up to 5wt%

Other properties

	U-19Pu-10Zr -2MA-2RE	U-19Pu-10Zr - <mark>5MA</mark>	U-19Pu-10Zr -5MA-5RE	U-19Pu-10Zr	Reported U-19Pu-10Zr
Density [g/cm3]	14.73	15.31	14.66	15.77	15.8 [2]
Melting point [°C]			1207±10	1217±10	1214±75 [3]
Elasticity					
Young's modulus [GPa]	-	-	93.31	85.22	
Shear modulus [GPa]	-	-	35.39	32.65	
Poisson's ratio	-	-	0.32	0.31	
Compatibility with SS * [1]	-	-	920-960	970-990	

*: Metallurgical reaction temperature between the alloy and stainless steel.

Influence of MA and RE addition \leq 5wt% is not significant.

[1] C. Sari, etal, J. Nucl. Mater., 208 (1994) 201. [2] J. H. Kittel, etal., Nuclear Engineering and Design 15, 373-440 (1971). [3] M.C. Billon, etal., Int. Conf. on Reliable Fuels for Liquid Metal Reactors, Tuson, Arizona, Sep. 7-11 (1986).

Irradiation Experiment

MA-containing alloys were irradiated in Phénix.

Irradiation Conditions

Irradiation parameters were analyzed taking account of the operation diagram of the Phénix reactor.

Projected Irradiation Conditions for METAPHIX Experi	riment
--	--------

	Pin No.1 U-19Pu-10Zr	Pin No.2 U-19Pu-10Zr <mark>+2MA+2RE</mark>	Pin No.3(lower) U-19Pu-10Zr <mark>+5MA</mark>	Pin No.3(upper) U-19Pu-10Zr <mark>+5MA+5RE</mark>
Begin of Irradiation Max. Linear Power ¹ [W/cm] Max. Cladding Temp. ² [ºC]	350 581	327 581	343 581	332 ←
End of METAPHIX-1 (120EFPD ³) Max. Linear Power ¹ [W/cm] Max. Cladding Temp. ² [°C] Max. Burnup [at.%]	330 572 2.4	308 572 2.5	325 572 2.4	313 ← 2.6
End of METAPHIX-2 (360EFPD ³) Max. Linear Power ¹ [W/cm] Max. Cladding Temp. ² [°C] Max. Burnup [at.%]	295 556 6.9	276 556 7.1	294 556 7.0	282 ← 7.5
End of METAPHIX-3 (900EFPD ³) Max. Linear Power ¹ [W/cm] Max. Cladding Temp. ² [°C] Max. Burnup [at.%]	268 543 10.9	251 543 11.2	269 543 11.2	256 ← 11.9

¹: Top of the test alloy, ²: Top of the fuel stack, ³: EFPD=Effective Full Power Days.

Axial Swelling of Fuel alloy

Fuel stack position was estimated by axial gamma-ray distribution from ¹⁰⁶Ru.

Fuel elongation behavior is independent of MA and RE additions. Axial swelling of METAPHIX fuels is within the range of the prediction.

Fission Gas Release

[1]: R. G. Pahl, etal., Proc. Int. Fast Reactor Safety Meeting, Session 2 Vol. IV, 129 (1990).

Metallography (1) Sample #1 & #2: U-19Pu-10Zr

(b) Sample #2

Two concentric regions are formed. (γ-phase is not observed.)

 \rightarrow Irradiation temperature < 650°C

Metallography (2) Sample #3: U-19Pu-10Zr-2MA-2RE

Cross-Sectional Overview

Matrix morphology is similar to that of U-Pu-Zr fuel (Sample #2).

Some narrow layered phases (MA-RE inclusions) spread along grain boundaries in γ + ζ zone. In low-temperature regions, some dark spots (MA and RE inclusions) are visible.

Metallography (3) Sample #4: U-19Pu-10Zr-5MA

Matrix morphology is similar to that of U-Pu-Zr fuel (Sample #2).

Some narrow layered phases (MA-RE inclusions) spread along grain boundaries in $\gamma+\zeta$ zone. In low-temperature regions, small dark spots (MA and RE inclusions) are observed.

Metallography (4) Sample #5: U-19Pu-10Zr-5MA-5RE

Matrix morphology is similar to that of U-Pu-Zr fuel (Sample #1).

Large precipitations (MA and RE inclusions) appear in γ phase zone. Some narrow layered phases (MA-RE inclusions) spread along grain boundaries in $\gamma+\zeta$ zone. In low-temperature regions, small dark spots (MA and RE inclusions) are observed.

Characteristics of Irradiated MA-Containing Metal Fuel

- 1. The radial distribution of fuel matrix morphology is similar to that of U-Pu-Zr ternary fuels.
- 2. Some large precipitations (MA and RE inclusions) appear in the high-temperature phase.
- 3. In the dense matrix zone, some narrow layered phases (MA and RE inclusions) spread along grain boundaries.
- 4. In low-temperature regions, some dark spots (MA and RE inclusions) are visible.

Summary

Relevant characteristics of U-Pu-Zr alloys containing MA (and RE) were examined.

In the case of \leq 5wt% MA and \leq 5wt% RE additions.

- Am-RE-rich precipitates are dispersed almost uniformly in the alloy,
- Basic properties are practically unchanged.

MA (and RE)-containing U-Pu-Zr alloys were irradiated in Phénix.

Fuel compositions: U-19Pu-10Zr, U-19Pu-10Zr-2MA-2RE,

U-19Pu-10Zr-5MA. U-19Pu-10Zr-5MA-5RE.

Peak burnups: ~2.5at.%(METAPHIX-1),~7at.%(METAPHIX-2),~10at.%(METAPHIX-3).

PIE on METAPHIX-1 & -2 started.

- NDT of the pins
 - No damage had occurred during irradiation.
- Gamma-ray spectrometry & Plenum gas analysis
 - Axial swelling and FP gas release are essentially the same as those of U-Pu-Zr fuels.
- Metallography
 - Radial distribution of matrix morphology is similar to that of U-Pu-Zr fuels.
 Some large precipitates (MA and RE inclusions) appear in γ-phase zone.

 - In γ + ζ phase region, some layered phase (MA and RE inclusions) spread along grain boundaries.
 - In low-temperature region, some dark spots (MA and RE inclusions) are dispersed.

Quantitative analyses are being carried out.

Thank you for your attention!!

Compositions of Metal Fuel Alloys

4 types of metal fuel alloy were prepared.

TABLE. Average Compositions of Fabricated Metal Fuel Alloys [wt%]

Target	71U-19Pu-10Zr	67U-19Pu-10Zr +2MA+2RE	66U-19Pu-10Zr +5MA	61U-19Pu-10Zr +5MA+5RE
U	71.00	66.85	66.30	63.50
Pu	18.93	19.80	19.35	19.75
Zr	10.19	9.46	8.97	8.19
MA	0.03	2.08	4.74	4.78
Np	-	1.23	2.97	3.04
Am	0.03	0.67	1.45	1.52
Ст	-	0.18	0.32	0.31
RE	-	1.73	-	3.40
Y	-	0.12	-	0.31
Ce	-	0.20	-	0.45
Nd	-	1.25	-	2.30
Gd	-	0.16	-	0.32

Impurities < 0.3wt%

Specifications of Metal Fuel Pins

Fuel pins were manufactured according to Phénix geometry.

TABLE. I del I in opecifications in this inadiation Experiments		
Pin length [mm]	1,793	
Outer cladding diameter [mm]	6.55	
Cladding material	15-15 Ti	
Fuel length [mm]	485	
Fuel diameter [mm]	4.9	
Initial fuel-cladding gap [mm]	0.375	
Fuel smear density [%]	75.2	
Sodium level above fuel* [mm]	~ 10	
Plenum length [mm]	464	

TABLE. Fuel Pin Specifications in this Irradiation Experiments

10mm

,793mm

485mm

*: Sodium is filled into fuel-cladding gap as thermal bonding.

METAPHIX Program

- Irradiation experiments were conducted from Dec. 2003 to May 2008 at Phénix.
- After cooling, NDT was carried out. No excessive damage due to neutron irradiation was observed.
- Irradiated fuel pins are transported to ITU for nondestructive & destructive PIE.
- After the PIE, pyrometallurgical reprocessing experiment is planned.