

Development of Multigroup Cross Section Generation Code MC²-3 for Fast Reactor Analysis

International Conference on Fast Reactors and Related Fuel Cycles December 7-11, 2009 Kyoto, Japan

Changho Lee and Won Sik Yang

Nuclear Engineering Division Argonne National Laboratory, U.S.A.

Background

- Under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) of U.S. DOE, an integrated, advanced neutronics code system is being developed to allow the high fidelity description of a nuclear reactor and simplify the multi-step design process
 - Development of UNIC with unstructured finite element mesh capabilities on a large scale of parallel computation environment
 - Integration with thermal-hydraulics and structural mechanics calculations
- As part of this effort, an advanced multigroup cross section generation code named MC²-3 is being developed
 - The ANL multigroup generation code system, ETOE-2 / MC²-2 / SDX, has been successfully used for fast reactor analysis
 - Recent studies with the ENDF/B-VII.0 data identified some improvement needs of MC²-2
 - Increased importance of resolved resonances in the ENDF/B-VII.0 data due to the extended upper energy cutoff and significantly increased number of resolved resonances required the use of RABANL for a rigorous treatment of resolved resonances
 - Use of RABANL is limited to the relatively low energy range where the isotropic source approximation is valid

ETOE-2 / MC²-2 / SDX

- ETOE-2
 - Generate MC² libraries by processing ENDF/B data, including ultrafine group smooth cross sections (2,082 groups with constant lethargy from 20 MeV to 0.4 eV)
 - Screen out wide resonances to smooth cross sections
 - Convert the resolved resonances in the Reich-Moore formalism to those in the multipole formalism
- MC²-2
 - Self-shield unresolved and resolved resonances using the generalized resonance integral method based on the narrow resonance (NR) approximation
 - Perform the consistent P1 or B1 transport spectrum calculations
 - Multigroup method for above resolved resonance energy range
 - Continuous slowing down method for the resolved resonance energy range
 - RABANL option for the hyperfine group slowing-down calculation based on isotropic elastic scattering (applicable below ~tens keV)
- SDX
 - Perform the 1D integral transport calculation to account for the local heterogeneity effects

MC²-2/SDX vs. MC²-3

4

Changes and Improvements in MC²-3

- Numerical integration of resolved resonances with pointwise cross sections based on the NR approximation
 - Reconstruction of pointwise cross sections with Doppler broadening
 - Optionally, use of PENDF files from NJOY
- Multigroup spectrum calculation with the consistent P₁ transport equation for the entire energy range
- New capability of treating anisotropic inelastic scattering
- Self-shielding of resonance-like cross sections above the resonance energy for intermediate-weight nuclides (Fe, Cr, Ni, etc.)
- 1D transport calculation with ultrafine (2082) or user-defined groups (SDX capability)
- 1D hyperfine (> ~100,000) group transport calculation
 - MOC solver with higher-order anisotropic scattering in the LS and CMS (up to ~1 MeV)

$$\sigma_{sl}^{i}(g \to g') = \frac{1}{\psi_{lg}} \int_{u_{g'-1}}^{u_{g'}} du' \int_{u_{g-1}}^{u_{g}} du \frac{\psi_{l}(u)\sigma_{s}^{i}(u)e^{-(u'-u)}P_{l}(\mu_{s}^{i})}{(1-\alpha_{i})} \sum_{n=0}^{N} (2n+1)f_{n}^{i}(u)P_{n}(\mu_{c}^{i})$$

- Inline cross section generation as a module of UNIC
 - Standalone version for conventional multi-step analyses
- FORTRAN 90/95 memory structure

Critical Experiments

Δk in pcm from Monte Carlo results

C/E of Fission Reaction Rate Ratios for LANL Assemblies

Assembly		Data	$\sigma^{\scriptscriptstyle U238}_{\scriptscriptstyle f}$ / $\sigma^{\scriptscriptstyle U235}_{\scriptscriptstyle f}$	$\pmb{\sigma}_{\scriptscriptstyle f}^{\scriptscriptstyle Np237}$ / $\pmb{\sigma}_{\scriptscriptstyle f}^{\scriptscriptstyle U235}$	$\sigma^{\scriptscriptstyle U233}_{\scriptscriptstyle f}$ / $\sigma^{\scriptscriptstyle U235}_{\scriptscriptstyle f}$	$\sigma_{\scriptscriptstyle f}^{\scriptscriptstyle Pu239}$ / $\sigma_{\scriptscriptstyle f}^{\scriptscriptstyle U235}$
	Experiment		0.1643 ± 0.0018	0.8516 ± 0.013	1.59 ± 0.03	1.4152 ± 0.025
GODIVA	C/E	MCNP ^{a)}	0.960	0.975	0.987	0.977
		MC^2 -3 ^{b)}	0.958	0.974	0.987	0.977
	Experiment		0.2133±0.0023	0.9835 ± 0.016	1.578 ± 0.027	1.4609 ± 0.013
JEZEBEL	C/E	MCNP	0.978	0.988	0.986	0.975
		MC^2 -3	0.968	0.986	0.987	0.975
JEZEBEL -23	Experiment		0.2131±0.0026	0.9970 ± 0.015		
	C/E	MCNP	0.989	0.984		
		MC^2-3	0.988	0.998		
ΓΙ ΑΤΤΟΡ	Experiment		0.1492 ± 0.0016	0.7804 ± 0.01	1.608 ± 0.003	1.3847 ± 0.012
-25	C/E	MCNP	0.968	0.988	0.975	0.982
		MC^2-3	0.966	0.988	0.975	0.982
FLATTOP -Pu	Experiment		0.1799 ± 0.002	0.8561 ± 0.012		
	C/E	MCNP	0.984	0.996		
		MC^2-3	0.970	0.992		
ΓΙ ΑΤΤΟΡ	Experiment		0.1916±0.0021	0.9103 ± 0.013		
-23	C/E	MCNP	0.976	0.997		
-23		MC^2 -3	0.976	0.998		

C/E of Fission Reaction Rate Ratios for LANL Assemblies

Hyperfine-Group Spectrum Calculation

Inner core composition of ZPR-6/6A

Ultrafine and Hyperfine Group Spectrum Calculation with Anisotropic Scattering Sources

ZPPR-15A Critical Experiments

120 - - 110 -	MATRIX TUBES			MATRIX TURES	
- 100 -	AXIAL REFLECTOR	MATTIA TODES			
90 - - 80 -	AMALREFLECTOR				
- 70 - 60 - 50 -	AXIALBLANKET	AXIAL BLANKET	R A D I A	RADIAL	
40 - 30 - 21 - 10 -	INNER CORE	OJTER CORE	B L A K K E T	REFLECTOR	

Loading	Experiment	VIM	M C ² - 2	M C ² - 3
15	1.00046	0.99985	-392	-245
16	0.99627	0.99571	-393	-244
20	0.99853	0.99742	-316	-192

* Uncertainty: Experiment < ±0.0018, VIM < ±0.00020

Argonne National Laboratory

ZPR-6 Critical Experiments

- A full core heterogeneous reactor calculations with explicit fuel plate representation
- 50,000,000 vertices

 (~equivalent to 200 million
 PARTISN finite difference cells)
- 200+ angles with P₅ anisotropic scattering
- 9, 33, 70, and 230 groups
- No thermal-hydraulics considerations (i.e. clean comparison with MCNP/VIM)

Plate by Plate ZPR Geometry

UNIC Results with MC²-3 Cross Sections

 Homogeneous cell cross sections with MC²-3 without the heterogeneity effect of fuel drawers

Energy Group	K-effective	Δ k pcm		
9	0.99513	113		
33	0.99373	-27		
116	0.99355	-45		
230	0.99344	-56		
VIM : 0.99400 ±0.00020				

Power Distribution

 Cell-averaged cross sections with the 1D slab transport calculation of MC²-3 to account for the heterogeneity effect of fuel drawers

	Energy Group	K-effective	Δ k pcm
	9	1.00007	26
VIIVI 0.99981 +0.00025	33	0.99966	-15
0.00001 20100020	116	0.99965	-16
	230	0.99966	-15
Argonne National Laboratory			

Summary

- New multigroup cross section generation code MC²-3 has been developed with improved methods
- Verification tests with LANL, ZPR-6, ZPPR-15A, ZPPR-21, and BFS critical experiments showed more rigorous and accurate solutions compared to MC²-2 / SDX
- 1D hyperfine-group transport calculation capability with higher-order anisotropic scattering sources is near completion
- Initial integration of MC²-3 into UNIC for inline cross section generation was accomplished
- Development of efficient algorithms for inline multigroup cross section generation is in progress