

FR09 - International Conference on Fast Reactors and Related Fuel Cycles

Analysis of Core Physics Test Data and Sodium Void Reactivity Worth Calculation for MONJU Core with ARCADIAN-FBR Computer Code System

T.Nakajima/JNES

December 7-11, 2009 Kyoto

Contents

- 1. Background
- 2. Outline of ARCADIAN-FBR Code System
- **3. Analysis of MONJU Core Physics Test Data by ARCADIAN-FBR**
- 4. Analysis of Sodium Void Reactivity Worth for MONJU Core by ARCADIAN-FBR
- 5. Summary

Background

- The operation was suspended over 14 years since 1995.
- ²⁴¹Pu changed to ²⁴¹Am and the reactivity of core decreased.
- For the restart of MONJU, a number of initial MOX fuels were replaced by the new MOX fuels which contain higher plutonium enrichment.

Background (Continued)

- MONJU core characteristics are affected due to the change of enrichment and composition of plutonium.
- Especially, the sodium void reactivity worth, which is an important parameter in the safety analysis of fast reactors, is strongly affected due to the accumulation of ²⁴¹Am.
- In order to evaluate the core characteristics of fast reactors, a computer code system ARCADIAN-FBR has been developed by utilizing the developed core analysis codes and the latest nuclear data library JENDL-3.3.
- Considering the ²⁴¹Am accumulation in the core fuel, the sodium void reactivity worth was analysed for MONJU core by ARCADIAN-FBR code system.

Structure of <u>ARCADIAN-FBR</u>

3

Analysis of MONJU Core Physics Test Data by MVP Code

MONJU core physics test data were analyzed to confirm the applicability of the continuous-energy Monte Carlo code MVP and nuclear data library JENDL-3.3 used in ARCADIAN-FBR code system.

- Description of MONJU Core
- Calculation Method of MVP
- Results of MVP Calculations

Description of MONJU Core

Main specification of MONJU

Core	Normal During system start		n start-up tests
Specifications	Equilibrium core	Initial critical core	First start-up core
Thermal output (MW)	714	0	0 - 321
Core height (m)	0.93	0.93	0.93
Core equivalent diameter (m)	1.79	1.66	1.79
Pu fissile fraction [Inner/Outer cores] (wt%)	16 / 21	15 / 20	15 / 20
Blanket thickness [Upper/Lower/Radial] (m)	0.30 / 0.35 / 0.30	0.30 / 0.35 / 0.30	0.30 / 0.35 / 0.30
Number of fuel assemblies [Inner/Outer cores]	108 / 90	108 / 60	108 / 90
Number of control rods	19	19	19

Measured data in Start-up Tests

- Criticality

JNES

- Excess reactivity
- Control rod reactivity worth
- Isothermal temperature coefficient, etc.

Calculation Method of MVP

ltem	Condition	
Code	MVP	
Method	Continuous-energy Monte Carlo	
Library	JENDL-3.3	
Core model	3-D pin by pin model	
Number of neutron histories	1,000,000 10,000,000	

Calculated parameters by MVP code

- Criticality
- Excess reactivity
- Control rod reactivity worth
- Isothermal temperature coefficient

Results of MVP Calculations for MONJU Core Physics Test Data

	Parameter	Measurement	Calculation	C/E
Criticality	Initial critical core	1.00	1.0004	1.000
(k_{eff})	First start-up core	1.00	1.0007	1.001
Excess	reactivity (%∆k/k)	2.8	2.8	1.00
Control	Main control rod (Central one rod)	in control rod ntral one rod) 0.974 0.982		1.011
rod reactivity worth	Main control rod (12 rods)	8.49	8.49	1.000
$(\%\Delta k/k)$	Back-up control rod (6 rods)	7.42	7.29	0.983
Isothe coeffic	rmal temperature ient (10⁻⁵∆k/k/°C)	-3.0	-2.96	0.987

Analysis of Sodium Void Reactivity Worth for MONJU Core

Using the Monte Carlo code MVP with JENDL-3.3 library, the sodium void reactivity worth was calculated for the two MONJU equilibrium cores and the effect of ²⁴¹Am accumulation on the sodium void reactivity worth was evaluated.

- MONJU Equilibrium Core
- Calculation Method of MVP
- Results of MVP Calculations

MONJU Equilibrium Core

Item	Reference equilibrium core	Alternative equilibrium core
Pu fissile fraction [Inner/Outer cores] (wt%)	16 / 21	16 / 21
Content of ²⁴¹ Am	²⁴¹ Am is neglected	Accumulation of ²⁴¹ Am is considered
	Decay of ²⁴¹ Pu 2.5 2.0 1.5 1.0 0.5 Decay of ²⁴¹ Pu Pu-241 Am-241 0.0 Decay of ²⁴¹ Pu	
	1994.5.27 1995.12.8 2006	.7.1

Calculation Method of MVP for Sodium Void Reactivity Worth

Core	Reference equilibrium core		Alternative equilibrium core		
Item	BOEC	EOEC	BOEC	EOEC	
Method	Continuous-energy Monte Carlo code MVP & JENDL-3.3				
Core model	Three dimensional pin by pin model				
Pu fissile fraction [Inner/Outer cores] (wt%)	16 / 21		16 / 21		
Content of ²⁴¹ Am	²⁴¹ Am is neglected		Accumulation of ²⁴¹ Am is considered		
Control rod condition	Nominal insertion	All rods out	Nominal insertion	All rods out	
Reactor power condition	Rated power		Rated power		
Voided region	Within the wrapper tube in the active core		Within the wrapper tube in the active core		

Neutron Spectra for Intact and Voided Cores

JNES

Results of Sodium Void Reactivity Worth for MONJU Cores

JNES

η value and Fission Cross Section of ²⁴¹Am

The η value and threshold fission cross section of ²⁴¹Am significantly increase in the energy region over 100 keV.
The spectral effect due to voiding is much larger in ²⁴¹Am accumulated core compared to no ²⁴¹Am accumulated core.

Summary

- The core characteristics of MONJU are affected due to the change of enrichment and composition of plutonium in the core fuel. Especially, the sodium void reactivity worth is strongly affected due to the accumulation of ²⁴¹Am.
- Considering the ²⁴¹Am accumulation in the core fuel, the sodium void reactivity worth was analysed for MONJU core by the Monte Carlo code MVP in the ARCADIAN-FBR code system.
- As a result of calculation, it was confirmed that the accumulation of ²⁴¹Am influences on the sodium void reactivity worth and hence on the safety analysis of sodium-cooled fast reactors.

Results of Sodium Void Reactivity Worth for MONJU Cores

		Voided regions	k _{eff}	Void reactivity (%Δk/kk')	Void reactivity (\$)	Remarks
BOI Reference equilibrium core	DOFO	None (Intact)	1.0125	—	—	1σ: ±14pcm
	BOEC	Within wrapper tube in active core	1.0175	0.487	1.56	1σ: ±13pcm
(²⁴¹ Am is neglected)	(²⁴¹ Am is neglected) EOEC	None (Intact)	1.0118	-	-	1σ: ±13pcm
		Within wrapper tube in active core	1.0179	0.598	1.92	1σ: ±13pcm
Alternative equilibrium core (²⁴¹ Am is included)	BOEC	None (Intact)	1.0065	—	—	1σ: ±14pcm
		Within wrapper tube in active core	1.0164	0.963	3.09	1σ: ±15pcm
	EOEC	None (Intact)	1.0120	—	—	1σ: ±13pcm
		Within wrapper tube in active core	1.0228	1.041	3.34	1σ: ±14pcm