FR09, Kyoto, Japan, December 7-11, 2009

MHI W. NAKAZATO MFBR K. IKEDA AREVA R. A. KOCHENDARFER MHI S. KUNISHIMA

December 9, 2009

Objectives

Scope and Requirements of ARR core design

Optimization of Am blanket in ARR

- Am type: Oxide and Nitride
- Other parameters
 - Am blanket fuel life
 - Dimensions of Ax. and Rd. Am Blanket
- ARR performance
- Conclusions

GNEP projects: For closed fuel cycle, Advanced Recycling Reactor (ARR) has been developed to enhance TRU or MA burning, especially Am which has a high decay heat and high radioactivity.

How can Am be transmuted by Am blanket effectively?

INRA's Strategy Concepts of Early ARR and Future ARR

Scope and Requirements of ARR core

	2025 ~	2050~				
Core/ Policy	Early ARR core/ matured Technologies	Future ARR core/ Expecting Future Achievements, innovative technologies				
	1.Survey of Specification	1. Enhanced TRU burning core				
	2. Sustainability of	•High Am content and Moderator pins				
Scope	Recycling	2. Enhanced MA transmutation core				
	3. Accommodation to several kinds of TRU	•Am blanket				
	TRU CR:~0.6 (Early ARR): ~	40kgTRU/TWeh				
	Void reactivity < \$6 *					
Conditions	Shutdown margin of primary	/ and secondary CRs > \$1, respectively*				
	MLHR depended on TRU enrichments, 430 W/cm* at most					
	Fast neutron Fluence (>0.1MeV) < 5.0E+23 n/cm2					
	Fresh Fuel Heat Generation < 6.0 kW/assy					
*The safety i	requirements are the same as	JSFR.				

Restrictions,

Optimized Am blanket

- Am blanket type ((Am, U)Ox, AmN)
- Other Parameters
- Performance in designed ARR

How to decide Am blanket type

	(Am, U)Ox	AmN
Technological Feasibility	Am/HM 20%	Am/HM 100%
r connoiogidar r casionity	Feasible*	Feasible*
Heat generation of fresh fuel	Practicable	Challenging
(6kg of HM in subassembly)	(3kW/assy)	(6kW/assy)
Am transmutation capability	Good	Better
Power rise by Pu accumulation	Good	Better

*(20% Am, U) Ox and AmN is being developed in JAEA

Why is AmN blanket promising? Technological Feasibility

<u>*1, *2developed by JAEA through production & irradiation test</u> *1 K. Tanaka, Evaluation of MA recycling concept with high Am-containing MOX

(Am-MOX) fuel and development of its related fuel fabrication process, Global 2009,

*2 Y. Arai, et al, Progress of Nitride Fuel Cycle Research for Transmutation of Minor Actinides, Global 2007,

Why is AmN blanket promising? Am transmutation & Heat generation of fresh fuel

Am blanket life
Length of upper/lower axial blanket
Number of radial blanket

ARR with Blanket

Page 13

ARR Specifications

Out	put 1180M 500 M	Wt We
Fue	ol Oxide	
Coc	olant Sodiu	m
\bigcirc	Inner Core	168
$\overline{\cdot}$	Outer Core	108
PC	Control Rod(Primary)	31
BCR	Control Rod(Back up)	6
	Radial Shield(SUS)	72
	Radial Shield(Zr-H)	78
\bigcirc	Am Blanket	66
	Total	529

Characteristics comparisons

	ARR core		
Blanket Type	Without blanket	AmN blanket	
TRU/HM	50%	<u>45%</u>	
Moderator pin ratio, ¹¹ B ₄ C	12%	<u>15%</u>	
MLHR (core, blanket) (W/cm)	356, N/A	345, 368	
Void reactivity (\$)	<u>5.7</u>	<u>5.3</u>	
TRU transmutation	67	70	
Am transmutation (kg/TWeh)	<u>32</u>	<u>81</u>	
	FR09, Kyoto, Ja	apan, December 7-11, 2	

Performance of Am blanket Am transmutation capability

ARR without Am Blanket ARR with Am Blanket

By AmN blanket,

Am transmutation increases by 2.5 times.

Conclusions

In pursuit of Am transmutation in a closed fuel cycle, INRA team propose ARR core with AmN blanket (long duration time, high Am transmutation efficiency). It has Am transmutation capabilities of 81 kg/TWeh, 2.5 times higher than ARR without blanket, satisfying safety requirements.

In other words, this 1GWe ARR can transmute Am from 56 plants of 1GWe LWR using UO2 fuel.

Thank you very much for your kind attention.

Any comments or questions?

Feasibilities of core with Am blanket

- Several Technological difficulties
 - Further R&D for
 - High MA containing fuel & nitride fuel
 - Manufacturing technology of MA bearing fuel
 - Irradiation tests of MA fuel
 - Assembling MA bearing fuel
 - remote handling manufacture & forced cooling
 - require 6 kW > current experience : 3 kW (MHI & JAEA)

Remetioner

Comparisons with each of equilibrium core

What is issues of Am blanket

Feasibilities concerning about decay heat

Decay heat level	Our prospectives
10kW	Feasible by forced air cooling
30kW	Feasible by Na. Some difficulty for transportation.
	FR09, Kyoto, Japan, December 7-11, 200

Early ARR and Future ARR

		Early ARR	Future ARR	
Parameter	Units	-	TRU burning core	MA tranmutation core
Thermal Power	MW	1180	1180	1180
Cycle length	EFPD	547/684	700	810
No. of Subassembly		276	276	276
Core Height	cm	70	70	70
Blanket		none	none	AmN
Moderator		none	B ¹¹ 4C	B ¹¹ 4C
Height of Axial Blanket (Lower/Upper)	mm	-	-	100/100
No. of Radial Blanket	mm	-	-	66
Cladding Thickness	mm	1	1	1
No. of Control Rod (Total/PCR/BCR)		37/31/6	37/31/6	37/31/6
No. of Pins		255	331	331
Fraction of moderator pins		0	12%	15%
No. of Exchange Fuel Batch		2/3	3	3
Volume Fraction of Fuel & Moderator		31.5%	30.7%	30.7%
Volume Fraction of Structure		31.6%	33.6%	33.6%
Volume Fraction of Void (fuel pins)		4.4%	4.6%	4.6%

Detail of spcifications

Effective Full Power days	(days)	810
TRU Fraction (TRU/HM, wt%)	Core	45.0%
MA Fraction (Am/HM, wt%)	Inner Core	10.2%
	Outer Core	4.4%
	Am Target	
	Core	7.9%
	Tot al	45.4%
Assembly Pitch	(cm)	19.92
Number of Assembly	Inner Core	168
	Outer Core	108
	Am Target	0
	Radi al Blanket	66
Moderator Fraction (vol%)		15.0%
Number of Fuel Pin	Core	281
	Radial Blanket	144
Number of Moderator Pin	Core	50
	Radi al Blanket	25

Comparisons with AmN and AmO2

	Nitride	•		Oxide		
Thermal conductivity	Several times higher		Almost same as UO2		JO2	
Melting point						
MLHR	800~1	1000W/cn	n	~430W/cm		
Problems	N-14 → C-14 radioactive		Separation of Am and O2			
	(solution) Enrichment of N-15		(solution) Au linear plate in Russia			
			FR09, Ky	oto, Japan,	December	7-11, 200

Some adjustments for Safety requirements

Calculation Results Moderator fraction (Step 5)

Calculation Results Enrichment of Am contents (Step 4)

Am /*HM*:1.9% →10% Void reactivity:\$3.3 →\$5.4,*TRU CR*:0.58 →0.46

TRU conversion ratio = (RHM – RTRU)/RHM RHM: mass consumption of HM between BOL and EOL RTRU: mass consumption of TRU between BOL and EOL

How to adjust

Void Reactivity

decrease of TRU/HM
→ less TRU transmutation capability
increase of Moderator Pin ratio
→ increase maximum linear heat rate

Trade off of these two parameters

Maximum Linear Heat Rate

AmN, AmO2 20wt% AmO2 50wt%

High Heat rise also leads to high sodium flow, and also leads to decrease of outlet temperature.

How to calculate Void Reactivity

Core region : Sodium \rightarrow Void

Only core region? Yes.

 This is because the limit of \$6 restricts blow off of the core at ULOF accident.

So, simultaneous, in other words, as the same time, is important, and our assumption is that the void of core and blanket will not occur at the same time.

This needs more discussions.

 The composition of TRU content is the same as in used nuclear fuel (UNF) discharged from light water reactors with a burn-up of 50 GWd/t;

Np-237 5.3% Pu-238 3.1% Pu-239 45.7% Pu-240 21.3% Pu-241 7.2% Pu-242 3.9%

Am-241 3.9% Am-243 2.1% Cm-244 0.8% (wt.).

Calculation Methodology

The adopted nuclear methodology is basically the same as employed for the core design of JSFR. The calculations have been conducted using 70-group constants JFS3-J3.3 proposed from the nuclear data file JENDL-3.3 [15], a 3-D triangle mesh diffusion calculation code TRISTAN, and a perturbation code TRI-PERT. TRISTAN is of a corner mesh type having the calculation mesh points at the triangle corners, as compared with the type having the mesh points at the center of each triangle.

Performance of Am blanket TRU Mass balance between A<u>RR and LWR</u>

Conditions of LWR used fuel

Ave. Discharged burnup50 GWd/tStorage time after discharging6 years

Kg/(y •1GWe LWR)

	UO2	1 MOX	2 MOX*
Am	12.7	22.7	30.9
Np	13.6	12.7	12.7
Pu	221.8	155.5	114.5
Cm	1.8	0.0	0.0

* Twice recycled MOX fuel

