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Objectives

GNEP projects: For closed fuel cycle, 
Advanced Recycling Reactor (ARR) has been 
developed to enhance TRU or MA burning, 
especially Am which has a high decay heat 
and high radioactivity.
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INRA’s Strategy
Concepts of Early ARR and Future ARR

2025～～～～ 2050～～～～

TRU transmutation

Economy Safety

Fuel Integrity,
Manufacturing,
& Reprocessing

Early ARR Future ARR

Matured technology Innovative technology
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Scope and Requirements of ARR core 

Core/ 
Policy

Early ARR core/ matured
Technologies

Future ARR core/ Expecting Future 
Achievements, innovative technologies

Scope

1.Survey of Specification
2. Sustainability of 
Recycling
3. Accommodation to 
several kinds of TRU

1. Enhanced TRU burning core
•High Am content and Moderator pins
2. Enhanced MA transmutation core
•Am blanket

Conditions

TRU CR:~0.6 (Early ARR): ~ 40kgTRU/TWeh
Void reactivity < $6 *
Shutdown margin of primary and secondary CRs > $1, respectively*
MLHR depended on TRU enrichments, 430 W/cm* at most
Fast neutron Fluence (>0.1MeV) < 5.0E+23 n/cm2
Fresh Fuel  Heat Generation < 6.0 kW/assy

*The safety requirements are the same as JSFR.

2025～～～～ 2050～～～～
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Optimized Am blanket

- Am blanket type ((Am, U)Ox, AmN)
- Other Parameters
- Performance in designed ARR
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How to decide Am blanket type
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(Am, U)Ox AmN

Technological Feasibility Am/HM 20%
Feasible*

Am/HM 100%
Feasible*

Heat generation of fresh fuel
(6kg of HM in subassembly)

Practicable
(3kW/assy)

Challenging
(6kW/assy)

Am transmutation capability Good Better

Power rise by Pu accumulation Good Better

*(20% Am, U) Ox and AmN is being developed in JAEA
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high oxygen partial pressure 
leads to separation of Am & O.

Am/HM 0% 20% 50% 100% 

AmO2
AmN

Feasible*1 Possible?

Feasible*2

*1, *2developed by JAEA through production & irradiation test 
*1 K. Tanaka, Evaluation of MA recycling concept with high Am-containing MOX
(Am-MOX) fuel and development of its related fuel fabrication process, Global 
2009,
*2 Y. Arai, et al, Progress of Nitride Fuel Cycle Research for Transmutation of 
Minor Actinides, Global 2007,

Why is AmN blanket promising?Technological Feasibility

AmN can be Uranium-free blanket.
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Why is AmN blanket promising?
Am transmutation & Heat generation of fresh fuel
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6 kW/assy

Pellet diameter was adjusted
AmN blanket : High Am transmutation 
& feasible in the heat generation issue
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less than twice

Why is AmN blanket promising?Power rise by Pu accumulation
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AmN does not cause high power rise during 
irradiation because of low Pu-239 production.

AmO2 20wt%

AmN 100%

1 12
12
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Optimization of Other Parameters
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•Am blanket life 
•Length of upper/lower axial blanket
•Number of radial blanket
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Fuel life of Am blanket
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Fuel Life of Am Blanket : 9 cycles

Fuel life (cycles)

Fuel Integrity requirements
Almost same Am transmutation capability

730 day/cycle
Small Recycled Amount

Limit from fuel Integrity Am transmutation efficiency
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Trade-off of Am 
transmutation and 
recycled amount

Length of Ax. Blanket 
10 cm each 

Number of Rd. Blanket 
66 /1 columns

Large recycled amount

Axial 
blanket

Radial blanket
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Core configuration of designed ARR

3700mm900mm

ARR with Blanket ARR Specifications
Output 1180MWt

500 MWe
Fuel Oxide
Coolant Sodium

100/100 mm
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Characteristics comparisons

ARR core
Blanket Type Without blanket AmN blanket

TRU/HM 50% 45%
Moderator pin ratio, 11B4C 12% 15%
MLHR (core, blanket) 
(W/cm) 

356, N/A 345, 368

Void reactivity ($) 5.7 5.3
TRU transmutation
Am transmutation 
(kg/TWeh)

67
32 

70
81
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Performance of Am blanketAm transmutation capability 

By AmN blanket, 
Am transmutation increases by 2.5 times.
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Performance of Am blanketAm Mass balance between ARR and LWR
Conditions of LWR used fuel

Ave. Discharged burnup 50 GWd/t
Storage time after discharging 6 years

ARR with Am blanket
1GWe X 710 kg/GWey

LWR-UO2
56GWe X 13kg/GWey

Am productionAm transmutation

LWR-MOX
31GWe X 23 kg/GWey

=

1GWe ARR with blanket can transmute Am 
from 56 plants of 1GWe LWR using UO2 fuel.
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Conclusions

�In pursuit of Am transmutation in a closed 
fuel cycle, INRA team propose ARR core 
with AmN blanket (long duration time, high 
Am transmutation efficiency). It has Am 
transmutation capabilities of 81 kg/TWeh,  
2.5 times higher than ARR without blanket, 
satisfying safety requirements.

�In other words, this 1GWe ARR can 
transmute Am from 56 plants of 1GWe LWR 
using UO2 fuel.
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Thank you very much 
for your kind attention.

Any comments or questions?
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Feasibilities of core with Am blanket

� Several Technological difficulties
Further R&D for 
�High MA containing fuel & nitride fuel
�Manufacturing technology of MA bearing fuel
�Irradiation tests of MA fuel
�Assembling MA bearing fuel

remote handling manufacture & forced cooling
require 6 kW  > current experience : 3 kW (MHI & JAEA)

Page 19



FR09, Kyoto, Japan, December 7-11, 2009
Page 20

Comparisons with each of equilibrium core

Power distribution of AmN blanket incrases
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What is issues of Am blanket
� Feasibilities Later
� High decay heat
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High decay heat  of the blanket by Cm-244 feasible

High Decay heat of 20 kW/assy 
until 20 years after discharging
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Feasibilities concerning about decay heat

Decay heat level Our prospectives
10kW Feasible by forced air cooling
30kW Feasible by Na.

Some difficulty for transportation.
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Early ARR and Future ARR
Early ARR

-
TRU

burning
core

MA
tranmutation

core
Thermal Power MW 1180 1180 1180
Cycle length EFPD 547/684 700 810
No. of Subassembly 276 276 276
Core Height cm 70 70 70
Blanket none none AmN
Moderator none B114C B114C
Height of Axial Blanket (Lower/Upper) mm - - 100/100
No. of Radial Blanket mm - - 66
Cladding Thickness mm 1 1 1
No. of Control Rod (Total/PCR/BCR) 37/31/6 37/31/6 37/31/6
No. of Pins 255 331 331
Fraction of moderator pins 0 12% 15%
No. of Exchange Fuel Batch 2/3 3 3
Volume Fraction of Fuel & Moderator 31.5% 30.7% 30.7%
Volume Fraction of Structure 31.6% 33.6% 33.6%
Volume Fraction of Void (fuel pins) 4.4% 4.6% 4.6%

Future ARR
Parameter Units
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Detail of spcifications
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Ef f ect i ve Ful l  Power  days ( days) 810

TRU Fract i on ( TRU/HM, wt%) Core 45. 0%

MA  Fract i on ( Am/HM, wt%) I nner  Core 10. 2%

Out er  Core 4. 4%

Am Target

Core 7. 9%

Tot al 45. 4%

Assembl y Pi t ch ( cm) 19. 92

Number  of  Assembl y I nner  Core 168

Out er  Core 108

Am Target 0

Radi al  Bl anket 66

Moder at or  Fract i on ( vol %) 15. 0%

Number  of  Fuel  Pi n Core 281

Radi al  Bl anket 144

Number  of  Moderat or  Pi n Core 50

Radi al  Bl anket 25
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Comparisons with AmN and AmO2

Nitride Oxide
Thermal conductivity Several times higher Almost same as UO2
Melting point
MLHR 800～1000W/cm ～430W/cm
Problems N-14 � C-14

radioactive
(solution)
Enrichment of N-15

Separation of Am and 
O2
(solution)
Au linear plate in 
Russia

Page 25



FR09, Kyoto, Japan, December 7-11, 2009

Some adjustments for Safety requirements
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Calculation Results 
Moderator fraction (Step 5)

TRU/HM:50%

Moderator pins of 10% reduces the void reactivity to $6.
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Calculation Results Enrichment of Am contents (Step 4)

6

TRU/HM:40
%

TRU/HM:100%

Am /HM:1.9%→→→→10% Void reactivity:$3.3→→→→$5.4,TRU CR:0.58→→→→0.46

TRU conversion ratio = (RHM TRU conversion ratio = (RHM –– RTRU)/RHMRTRU)/RHM
RHM: mass consumption of HM between BOL and EOLRHM: mass consumption of HM between BOL and EOL
RTRU: mass consumption of TRU between BOL and  EOLRTRU: mass consumption of TRU between BOL and  EOL
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How to adjust
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Void Reactivity
- decrease of TRU/HM
� less TRU transmutation capability   

- increase of Moderator Pin ratio
� increase maximum linear heat rate

Trade off of these two parameters
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Maximum Linear Heat Rate
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AmN,  AmO2 20wt% AmO2 50wt%

High Heat rise also leads to high sodium 
flow, and also leads to decrease of outlet 
temperature.
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Am blanket components during irradiations
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AmN AmO2
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How to calculate Void Reactivity

� Core region : Sodium � Void

�Only core region?   Yes.
�This is because the limit of $6 restricts blow off of the core 
at ULOF accident.
So, simultaneous, in other words, as the same time, is 
important, and our assumption is that the void of core and 
blanket will not occur at the same time.
This needs more discussions.
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Calculation Conditions
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・・・・ The composition of TRU content is 
the same as in used nuclear fuel (UNF) 
discharged from light water reactors with 
a burn-up of 50 GWd/t;
Np-237 5.3%
Pu-238 3.1%
Pu-239 45.7%
Pu-240 21.3%
Pu-241 7.2%
Pu-242 3.9%

Am-241 3.9%
Am-243 2.1%
Cm-244 0.8% (wt.).
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Am Transmutation Fission, Capture and Decay

Am241

Am242m

Am242

Cm242

Pu242
Pu238

141 y

163 d

16 h85%

83%

neutron

Easy Fission

Destructing Am by fission and changing 
to the small material number nuclide  
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Calculation Methodology

� The adopted nuclear methodology is basically the same as 
employed for the core design of JSFR. The calculations 
have been conducted using 70-group constants JFS3-J3.3 
proposed from the nuclear data file JENDL-3.3 [15], a 3-D 
triangle mesh diffusion calculation code TRISTAN, and a 
perturbation code TRI-PERT. TRISTAN is of a corner mesh 
type having the calculation mesh points at the triangle 
corners, as compared with the type having the mesh points 
at the center of each triangle.
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Performance of Am blanketTRU Mass balance between ARR and LWR
Conditions of LWR used fuel

Ave. Discharged burnup 50 GWd/t
Storage time after discharging 6 years

UO2 1 MOX 2 MOX*
Am 12.7 22.7 30.9 
Np 13.6 12.7 12.7 
Pu 221.8 155.5 114.5 
Cm 1.8 0.0 0.0 

Kg/(y・・・・1GWe LWR)

* Twice recycled MOX fuel
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