

FR09 Panel 2: International Activities Harmonization of Prototypes

Sal Golub Office of Nuclear Energy U.S. Department of Energy

10 December 2009

Background

Nuclear Energy

- In 2007, France, Japan, and the United States shared similar plans and timeframes for developing sodium-cooled fast reactor (SFR) prototypes.
- The 3 research agencies: CEA, JAEA and DOE (U.S.) signed a Memorandum of Understanding in Jan 2008 to cooperate on SFRs
 - Harmonize SFR prototype development
 - Ultimate goal of deploying SFR prototypes through an efficient collaborative process
- Much was accomplished in laying the groundwork for mission and requirements, fuels, technology innovations, and infrastructure.
 - "International Project Harmonization for SFR Development" presented at GIF Symposium (Sept 2009) in Paris
- Recent U.S. policy shift away from accelerated deployment of commercial scale SFR prototype

Memorandum of Understanding Work Scope

Nuclear Energy

The original MOU included 8 activities

- Design goals and high-level requirements
- Safety principles
- Power level and reactor configuration studies
- Fuel comparisons
- Start-up fuel facilities
- Technology innovations for SFR cost reduction
- Infrastructure collaboration
- Target dates for prototype development

A revision to the MOU in August 2008 added 3 new tasks.

- Monju restart
- Minor actinide fuel or target qualification
- Advanced fast reactor fuel cycle characteristics.

Prototype Mission Objectives

Nuclear Energy

- A set of Mission objectives was developed for Advanced Fast Reactor Prototype(s)
 - Demonstrate effective actinide management while generating electricity
 - Demonstrate fast reactor safety
 - Demonstrate design features for cost reduction and financial risk minimization
 - Provide capability for fast spectrum irradiations
 - Demonstrate reactor safeguards and security
- It was recognized that more than one prototype may be needed to fully satisfy all mission requirements

Fuels Research and Development

Nuclear Energy

The three participants have similar constraints:

- Start-up without minor actinide fuel
- Lack of existing facilities to fully address the needs

Potential SFR fuel types were compared

- oxide, metal, carbide, and nitride (with and without minor actinides)
- Examined fuel fabrication requirements and facilities available to produce start-up fuel

General areas of collaboration:

- Fuels and materials irradiation tests
- High-burnup capability development
- Fuel transient safety tests

Technology Innovations for Cost Reduction

Nuclear Energy

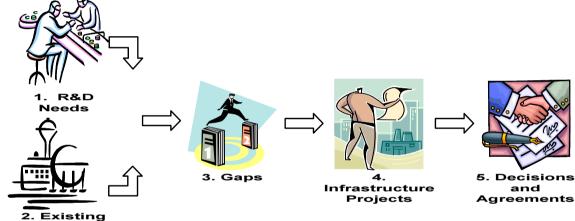
Several cost reduction technologies were identified as potential collaboration areas going forward, e.g.

- Large diameter seamless piping
- Compact fuel handling systems
- Integrated auxiliary systems, such as integrated purification systems
- Advanced materials for structures and components ✓
- Passively-cooled nuclear instrumentation, detectors, and other instrumentation
- Large-capacity steam generator technology development
- Advanced energy conversion technology

Many additional technologies were identified that indirectly affect costs (safety, reliability, performance), e.g.

- Radiation and thermal resistant insulation
- In-service inspection and repair ✓
- Natural circulation decay heat removal
- Sodium/water reaction detection
- Seismic isolation (2D and 3D)

✓ Developed detailed work plans for these technologies.



Infrastructure Collaboration

Nuclear Energy

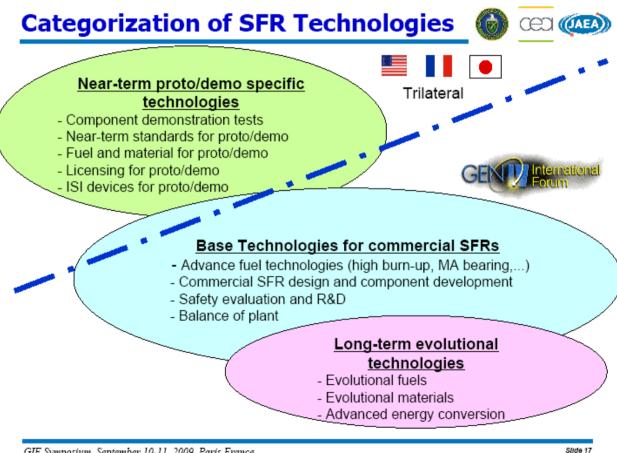
... the significant physical and intellectual investment in infrastructure required to support SFR development need not be duplicated...but rather can be shared and harmonized in an efficient and

equitable fashion..

Four priority projects selected

• Address high-priority R&D needs

Infrastructure


- Complex and costly
- Generally supported by the three participants

- JAEA's large-scale sodium test loop
- CEA's TRIPOT static sodium component test facility
- DOE's TREAT transient overpower test facility
- CEA's MASURCA zero-power critical facility

Framework for Cooperation

Nuclear Energy

GIF Symposium, September 10-11, 2009, Paris France

Challenges and Opportunities for the Future

Nuclear Energy

Challenges:

Opportunities:

- High cost of R&D, technology development, and supporting infrastructure
- Long time frame needed to develop and deploy prototypes
- Differences between the national programs

- Build upon past successes in international collaborations
- Leverage existing international agreements to their fullest
- Maintain an open dialogue to explore future opportunities for international collaboration