

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

PANEL 1 Economics and Performance of Fast Neutron Systems

Vladimir Kagramanyan

Institute for Physics and Power Engineering

Obninsk, Russia

FR09, Kyoto, December 2009

Fast Reactor System Competitiveness

Global and country specific arguments:

- 1. What are the reasons?
- 2. What to do?
- 3. Technological background.

Russian perspectives.

What are the reasons for FR systems?

Long term global and national perspectives. - NP based on FR system provides opportunities for sustainable energy supply with:

- Efficient use of natural nuclear resources
- Effective SNF and nuclear waste management
- Non-proliferation

Medium term (2030) country specific reasons for FR system development:

- Increase NP capacity
- Address LWR SNF accumulation challenge

Russian perspectives:

Long term – By 2050 we need about 100 GWe of NP.

Sustainability of NP can be achieved only on basis of FR system

Medium term - By 2030 it is planned to increase NP capacity from present 23 GW(e) up to 50-60 GW(e). Challenges: Accumulation of VVER and RBMK SNF; Export of VVER with SNF take back policy.

FR system can help in :

- Providing partially required increase in NP capacity
- Demonstrating effective way of LWR SNF management
- Demonstrating opportunities for institutional solutions of Pu nonproliferation

What to do?

Long term perspective:

- 1. Develop, demonstrate and commercialize all elements of FR system, including:
 - NPP with FR (sodium; lead-bismuth; lead)
 - FR SNF reprocessing (aqueous; dry)
 - FR fuel fabrication (MOX; nitride; metal)
 - Effective MA management
- 2. Introduce technological barriers and institutional measures to assure non-proliferation

Medium term perspective: Russia

- 1. Develop and demonstrate at industrial level key elements of FR system:
 - NPP with FR some 10 GWe BN type reactors
 - LWR and FR SNF reprocessing RT-2 reprocessing plant advanced aqueous tech.
 - FR fuel fabrication MOX fabrication plant for BN reactors
 - LWR MA management Np recycling in BN; Minimization of Am accumulation
- 2. Demonstrate institutional measures of non-proliferation assurance
 - International center for LWR SNF management
- 3. Develop and demonstrate innovative reactor and fuel cycle technologies

Russian Background and Challenges for Medium Term FR System Development (1).

NPP with BN

- Safe and economical operation of BN-600, with specific capital cost about 40% higher than that of VVER-1000
- Allocated specific capital cost for BN-800 construction is only 20% higher than that of VVER-1000
- Estimated capital cost of FOAK commercial BN-1200 to be build before 2020 is about the same as that of VVER-1200

Russian Experience in Development and Implementation of BN for NPP

Reactor	Development	Construction	Operation
BN-350	1960 - 1965	1965 - 1973	1973 -1998
BN-600	1963 - 1972	1972 - 1980	1980 - in operation
BN-800	1975 - 1983	Under construction	Planned for 2014
	2002 - 2004		
BN-1600	1980's	-	-
BN-1800	2002 - 2005	-	-
BN-1200	From 2006	-	Planned for 2020

Russian Background and Challenges for Medium Term FR System Development (2).

BN MOX fabrication

MOX fabrication technologies are demonstrated at experimental level.

Challenge:

Develop an industrial level MOX fuel fabrication plant for BN reactors

SNF reprocessing plant

 RT-1 plant (aqueous technology) is reprocessing SNF from VVER-440 and BN-600

Challenge:

Upgrade aqueous technology for use in RT-2 plant to meet environmental requirements and to effectively reprocess SNF from VVER-1000, RBMK and BN-1200

BN-600 Load Factor (1982-2008)

www.rosatom.ru

View of the BN- 800 Construction Site (BNPP, 10.2009)

vessel bottom

BN-1200 Reactor Unit

2 Main vessel **3 Safety vessel 4 Strongback 5** Core diagrid 6 Core debris tray 7 Core **8 Pressure pipeline 9 MCP 10 Rotating plugs 11 CRDM 12 FA reloading** mechanism

Our motto: Steady progress in practical implementation is the pledge of success

Thank you