Uranium Resources in the Middle East

Fares M. Howari¹, Philip Goodell², & Salman Abdulaty³

¹Jackson School of Geosciences University of Texas at Austin; ²Geological Science Dept, UT El Paso, & ³ Nuclear Material Authority, Egypt

fares.howari@beg.utexas.edu

Year

and it will continue to grow.

F. M. Howari, May 2009

Uranium Resources of the Middle East Region

Although best known for its hydrocarbon resources, oil, the Middle East together with several North African countries is potential home to uranium bearing deposits that have not been fully investigated and explored.

Thus it is important to know where presently reported uranium resources are located, and further investigate and locate additional ones.

The Red Book

The Red Book is a document published by the European Union and The International Atomic Energy Agency every two years, and it gives the official uranium resources reported by every member country, according to specified categories.

However, scientific literature of Uranium Geology does not coincide completely with the information presented in the Red Book especially in the Middle East.

First Step!

- amount of information A vast reports, resides in Master's theses and Ph.D. dissertations in universities throughout the Middle region. Compilation East mori these latter data bases is only in the beginning stages 0Ĵ e mot background to move forward in a structured uranium noiterolqxe program.
- An attempt made through 6ICGM to present the significant findings in form of tables. and maps Integration with large scale geotectonic still features İS Īn process.

Contact Us Site Index News Feeds Signup for News About IAEA Our Work News Centre Publications Data Centre Search this site Go You are in : Home > Our Work > Technology > NE > NEFW > NFC&MS NFCMS Home Uranium Production Cycle

Uranium Production Cycle Nuclear Fuel

Introductory Session:

Amman, Jordan

Presentations

- Meeting Agenda
 Introduction to the Technical Meeting by Jan Slezak, IAEA scientific secretary
- Jordan welcome address a background situation speech on nuclear issues by HE Khaled Toukan, JAEC

Technical Meeting on "Uranium Exploration and Mining Methods", 17 – 11 November 2008,

- IAEA subprogramme on uranium production cycle by Jan Slezak, IAEA
- → Nuclear development in the Middle East countries by Fares Howari, USA
- WNU-School of Uranium Production by Jan Slezak, IAEA

Current uranium production cycle issues:

- Uranium geology of the Middle East with focus on new prospective and mining potential by Fares Howari, USA
 - Joint OECD-NEA/IAEA Uranium Group recent activities and Red Book 2007 by Jan Slezak, IAEA
 - Recent developments in uranium production cycle in Jordan by Ned Xoubi, JAEC
 - Nuclear safety aspects in uranium production cycle by Shaun Guy, IAEA

Uranium geology and exploration:

- Recent developments in uranium exploration in Canada by Geoff Parslow, Canada
- Uranium Mineralization of the Bayawula deposit, Erlian Basin, North East China by Nie Fengiun, China
- Remote sensing and reflectance spectroscopy as useful tools for uranium exploration by Fares Howari, USA
- Uranium exploration methods and techniques by Geoff Parslow, Canada
- Methods of uranium exploration in arid terrains by Abdelaty Salman, Egypt
- Nuclear policies in the Middle East by Fares Howari, USA
- Recent developments in uranium exploration in Australia by Aden McKay, Australia
- Reserve estimation for uranium deposits by Abdelaty Salman, Egypt
- IAEA guidance on radiation safety aspects in the uranium production cycle by Shaun Guy, IAEA
- Results of the IAEA TM on "Implementation of the Sustainable Best Practice in Uranium Mining and Processing" by Jan Slezak, Shaun Guy, IAEA
- Nuclear power plant site selection by Abdelaty Salman, Egypt

Uranium production:

World Distribution of Uranium Deposits (UDEPO)

UDEPO web site

- It gives list of deposits
- provides easy navigation and search

			FC	BIS ISSUE (Declarer NFCIS UDEPO PIE VISTA MADB
UDEPO	World D	istribution	of Ur	ranium Deposits
Deposits	Statistics	Country Report	Help	User Hehmet Ceyhan

Initial Resources of Uranium Deposits

				Select Su	mmary Ta	blei					
O Deposit Num and Type	ibers by Country	 Initial Ro Type (*) (** 	esources by (Country and	O Deposit Numbers by Region and Type			n O Initial P Type (*) (*	O Initial Resources by Region and Type (*) (**)		
Deposit Type	0	Deposit Status 🔞			Region			Country			
Al		Al	¥		The World			Al	¥		
Name contains	a				Go			Reset All Filters			
Country	Unconformity	SandStone	Hematit Breccia Complex	Quartz- pebble Congl.	Yelcanic	Intrusive	Yein	Metasomatic	Other	Total	
Algeria	0	1,500	0	0	D	0	19,400	0	0	20,900	
Argentina	a	16,790	D	D	D	D	1,720	D	1,285	19,795	
Australia	365,579	100,878	1,335,940	0	9,313	5,129	2,544	18,725	74,160	1,912,270	
Bolivia	a	500	D	D	D	D	D	D	D	500	
Brazil	0	7,000	0	0	22,700	0	0	160,700	0	190,400	
Bulgaria	a	38,300	D	D	4,780	D	12,980	D	1,500	57,560	
Cameroon	0	5,000	0	0	0	0	0	0	0	5,000	
Canada	458,250	4,040	D	232,300	9,590	7,500	39,650	D	D	751,330	
Central African Republic	a	D	D	D	D	D	D	D	16,700	16,700	
Chile	a	D	D	D	D	D	D	D	D		
China	0	10,500	0	0	20,000	0	11,000	0	26,000	67,500	
Congo	a	D	D	D	D	D	29,500	D	D	29,500	
Czech Republic	0	140,000	0	0	0	0	90,000	D	2,500	232,500	

	NTGY Agency		lome Logout Feedbac IS UDEPO PIE V	k Disclaimer ISTA MADB
UDEPO world	l Distribution of L	Iranium Depos	its	
Deposits Statisti	cs Country Report Hel	p	Usi	er Mehmet Ceyhan
	List o	f Uranium Deposi	its	
Deposit Type 🔞	Deposit Status 🔞	Region	Country	
All	All	The World	Canada	~
Name contains:			Go	Reset All Filters
		Total 41	. records found in ${f 3}$ pag	es. 🕥 <u>1</u> 2 <u>3</u> 🕑
Deposit Name 🕏 🕭	Deposit Type マ 🕭	Deposit Status マ 🗢	Country 🕏 兽	Region 🕏 🕭
Agnew Lake	Quartz-pebble Conglomerate	Depleted	Canada	North America
Bancroft	Intrusive	Dormant	Canada	North America
<u>Beaverlodge</u>	Vein	Depleted	Canada	North America
Blizzard	Sandstone - Basal Channel	Dormant	Canada	North America
<u>Cigar Lake</u>	Unconformity-Proterozoic Fracture-bound	Development	Canada	North America
<u>Claude</u>	Unknown	Depleted	Canada	North America
Cluff Lake	Unconformity-Proterozoic Fracture-bound	Closed	Canada	North America
<u>Collins Bay</u>	Unconformity-Proterozoic Fracture-bound	Closed	Canada	North America

- gives worldwide summaries
- this example gives the initial uranium amounts in the deposits by country and by deposit type

Source, IAEA

F. M. Howari, May 2009

Some global examples from the Red Book

Countries with major Identified uranium resources and countries with major nuclear power

Known Identified Resources:

Undiscovered Conventional Resources (prognosticated+Speculative) :

Undiscovered Speculative (cost range unassigned):

Unconventional Resources in Rock Phosphates alone:

<u>4.743 million tons U</u> <u>7.07 million tons U</u> <u>2.98 million tons U</u> 22 million tons U

ſ	Country	Uranium R Tons 'U' (P of wo	esources ercentage orld)	No. of Operating NPPs (% Electricity)		
ľ	Australia	1 143 000	24%	Nil		
ľ	Kazakhstan	816 099	17%	Nit		
ľ	Namibia	282 359	6%	Nil		
ſ	Niger	225 459	5%	Nil		
	Uzbekistan	115 526	2.5%	Nil		
	USA	342 000	7%	104 (20%)		
	Canada	443 800	9.4%	20 (~12%)		
	South Africa	340 596	7%	2 (5.9%)		
	Russian Fed.	172 402	3.6%	30 (16%)		
	Brazil	278 700	6%	2 (4%)		
	India	64 840	1.4%	15 (2.8%)		
-	China (excl. Taiwan)	59 723	1.3%	9 (2.2%)		
	Fran co	100% from ove	rseas sources	59 (78%)		
R	Germany	100% from over	rseas sources	18 (32%)		
754	Japan	100% from over	rseas sources	54 (30%)		
-	Koma (R.O.)	100% from over	rseas sources	19 (38%)		
-	UK	100% from over	rseas sources	23 (19.4%)		

The International Atomic Energy Agency assigns the uranium deposits according to their geological settings to 15 main categories of deposit types arranged according to their approximate economic significance [IAEA, 2004]:

- 1. Unconformity-related deposits
- 2. Sandstone deposits
- 3. Quartz-pebble conglomerate deposits
- 4. Vein deposits
- 5. Breccia complex deposits (Olympic Dam type)
- 6. Intrusive deposits (granite type)
- 7. Phosphorite deposits

8. Collapse breccia pipe deposits (north Arizona)
9. Volcanic deposits
10.Surficial deposits (calcrete)
11.Metasomatite deposits
12.Metamorphic deposits
13.Lignite
14.Black shale deposits
15.Other types of deposits

Potential occurrences of Uranium in the Middle East

These books have covered global uranium supply, but little to no information on the Middle East!

Several exploration models are available but not applied or tested in the Middle East.

1-Models of origin and guides for exploration include Pena Blanca, Mexico, and Ben Lomond, Australia, mineral districts.

2- Models of origin and guides for exploration include Yeelirrie, Western Australia and Langer Heinrich in Namibia (e.g. S3 and S4 are adjacent and related).

3-Model for the sabkhah (playa) calcrete mineralization is the Lake Way U deposit in Western Australia. F. M. Howari, May 2009

Regional geology, southern Kazakhstan

Mineralised sequence and underlying hydrocarbon basins

Sandstone uranium systems

Kazakhstan model (below): Large basin rimmed by U-rich felsic rocks

Highly permeable sandstones

Very low concentration of organic and inorganic reductant

HC as the main reductant: localised and effective reduction

Uranium in the Middle East

Geologically speaking the Middle East could have several distinct types of uranium deposits; these could include unconformity related, sandstone hosted, paleoplacer, phosphate calcrete and pegmatite.

However, by far the most important type of economic uranium deposit in the Middle East is yet to be determined.

Uranium in the Middle East

The Middle East could be considered to house some 20 billion tons of phosphate resources, which, at 20% P2O5 as an average, would contain 4 billion tons P2O5. Most of the Middle East phosphates contain uranium to some extent. The uranium occurs mainly as a replacement element in the structure of fluorapatite and francolite phosphate minerals.

Resources of phosphate of Late Cretaceous and Paleocene age in the Middle East, defined as Iraq, Iran, Jordan, Saudi Arabia, and Syria have been estimated at about 15.7 billion tons containing about 3.4 billion tons of P2O5.

Uranium in the Middle East, Phosphate

- The concentration of uranium varies from country to country and deposit to deposit. For scoping purposes, taking an average U content of 60-120 ppm, the Middle East phosphate resources would contain 1.2 million tons of uranium.
- Uranium extraction requires the conversion of phosphate to phosphoric acid followed by solvent extraction. Thus, recovery of uranium from phosphates is essentially dependent on installed phosphoric acid production capacity and what fraction of that capacity is subject to extraction of uranium.

Uranium in the Middle East, Pan African granite

The Pan African granites (about 600-500 Ma) are one of the most favorable environments to host vein type uranium deposits. This case is very clear in Algeria, Morocco, Egypt, Sudan, Saudi Arabia, Turkey, and other countries as well.

The uranium mineralizations are hosted in these granites within some favorable structures as faults and fractures.

The presence of intra-cratonic basins within many basement rocks exposures are another favorable environment. Often these basins are filled with late Proterozoic molasses type sediments as Hammamat series in Egypt and can form important uranium traps according to their geochemical and geological characteristics.

Selected examples

Jordan •1980- aerial radiometric survey of the entire country

•1982, 1989, 1997: phosphate evaluation, were close to extraction plant construction

•1700 trenches
•15000 car-borne and foot gamma measuring points

•11000 emanometry and track-etch radon gas points

•Hundreds of boreholes

•Thousands of samples were collected and analyzed

New Jordanian Discoveries

NRA Estimated Uranium Ore (U3O8) Deposit									
Central Jordan Uranium Areas	Block	Area km²	Total Area km²	Average Conc. ppm	Total Average Conc. ppm	Average Ore Thick. meter	Estimated Uranium Ore (U ₃ O ₈) Inventory (tones)	Total Estimated Uranium Ore (U ₃ O ₈) (tones)	
	1	7.1	28.1	688	592	1.25	8.548	34320	
Siwaga	2	14.9		778		1.27	20.4		
Siwaya	3	0.82		488		1.42	0.8	34320	
	4	5.26		415		1.49	4.57		
	1	7.56	22.73	405	345	1.34	5.74	14965	
Attarat and W.	2	3.5		342		1.23	2.06		
Maghar	3	4.8		263		1.31	2.315	14965	
	4	6.87		371		1.36	4.85		
Khan Azzabib	KZ	9.18	9.18	946	948	1.28	15.595	15595	
Total		60	60			1.32	64880	64880	
Ned Youbi, JERI 2008 F. M. Howari, May 2009									

ALGERIA

- Tassili, Tahaggart, Eglab, Ougarta, Tamart, Timouzeline, Timgaouine, Abankor, El-Bema, Ait-Oklan, Abankor, Tinef, Tesnou, Pharusian
- A1: exist in southern Hoggar (north of A2) it belongs to Upper Proterozoic unconformity & basal conglomerates
- A2: exist in continental sandstone and found in Tassili south of the Hoggar. General geological character: Tin-Seririne basin, Tassilian sedimentary cover above the Proterozoic unconformity (A1). Specific locality/deposit names: Tahaggart deposit, southern Tassili; also Eglab, Ougarta Tamart-N-Iblis, Timouzeline,
- A3: it can be found in vein and granitic shear zone. Deposit located in southwestern Hoggar, western Hoggar. General geological character: veins in faults in granite batholiths; specific locality/deposit names: Timgaouine, Abankor, El-Bema, Ait-Oklan; occurrences at Abankor, Tinef, and Tesnou.
- A4: found in western Hoggar; the specific locality/deposit names is Pharusian chain

SAUDIA

SAUDIA: Ar Rawdah, Al Hanakiyah; Hulayfah, Jabal Asfar Shwelil, Tabuk, ad Dumathah, Turayf

S1, exist in volcanic type in north central, and consist of Precambrian felsic volcanics, calderas, Umm Misht formation of the Shammar group.

S2 deposit type: sandstone in Tabuk basin, black shales have high U, and adjacent sandstones are prospective targets. Specific locality/deposit names: locations: Tabuk basin (28 30'N; 36 20'E).

S3 deposit type: calcrete; Hulayfah belong carbonate evaporite facies have between 10 and 350 ppm U;

S4, deposit type: sabka, general geographic region: Sabkhah ad Dumathah, general geological character: lake beds, specific locality/deposit names: locations: Sabkhah ad Dumathah (23 35'N; 40 25'E)

S5, deposit type: phosphate, general geographic region: general geological character: Phosphate beds in the Turayf basin contain U.

Potential occurrences of Uranium in the Middle East e.g Egypt and Saudi **Arabia**

"Igneous & Metamorphic-related Vein-types deposits consist of U mineralization in lenses or sheets or disseminations filling joints, fissures, fractures and stockworks in post-accretionary structures which include several fault systems e.g. Najd fault system. The deposits are commonly spatially related to peraluminous granites especially at their contact with host rocks of siltstones and greywackes"

China, responsible for the mineral exploration for rare 🔀 al and precious stones and was involved in the ect of the assessment of the Baivunaobao Deposit. Next ts rare earth reserve, the largest in the world. In 1982, ha Honaren was transferred again to the newly reconstructed Ministry of Geology and Mineral Resources and was appointed director of the Department of Hydro-Geology and Engineering Geology of the Ministry. In 1984, he was appointed the chief aeologist of the ministry and in 1986, the Vice-Minister until June of 1998. After the 29th International Geological Congress in Kyoto, Zhang Hongren was concurrently the Secretary General of the 30th IGC in Beijing and after the Congress, he was appointed to the editor of Episodes until now.

Prof. Alsharhan, A.S. Professor of Geology and Previous Dean of the Faculty of Science at the United Arab Emirates University, and . He holds a Ph.D. degree in petroleum geology from the University of South Carolina in 1985. He has

authored and published over 80 scientific papers. He co-authored Sedimentary Basins and Petroleum Geology of the Middle East (1997) with A.E. Naim and Hydrogoelogy of an Arid Region: Arabian Gulf and Adjacent Areas (2001) with Z. Rizk, A.E. Naim, D. Bakhit and S. Al-Hajari. He co-edited Quaternary Deserts and

geochemistry, ec and mineralogy and continuing metal and sulfos and how they relate to economic aed

boiling in epithermal systems is an ide tested. Sulfosalts also serve as an en recearch Uranium resources in volcanic and vo

has also been an extended researc Goodell, including the organization o and international (1984) meetings on Paso. His expertise has taken him t Argenting (1995), and as an invited topic at the International Geological C (1996). This avenue of research has er environmental issues of nuclear wast sites are under study which serve as an and low-level nuclear waste performa studies.

since 1994. Member of the National Committee for

Cont

Some opinions suggest that convective circulating fluids (mixture of meteoric and connate waters), heated in response to intensive tectonism, leached U from the host metasediments and transported it as uranylcarbonate complexes to the marginal zone of the granite plutons.

EGYPT

Abu Rusheid Shear Zone

Precipitation of secondary U-minerals along walls of joints and fractures

Distribution of uranium in phosphorite by fission tracks method.

A- Hard phosphorite: different phosphatic elements with coated grain (bone) in natural light.

B- Same sample in A- fission track study:

- Matrix free of uranium.

- Uranium is always related to phosphatic grain.

- The coated grain, uranium in the nucleus is less than in the cortex .

C- Uncoated phosphatic grain-pigmented at the cortex by organic matternatural light-Morocco phosphorite

D- The same sample in C-fission track study: The pigmented cortex is more richer in uranium (363 ppm), than non pigmented internal part of the grain (2, 82 ppm).

After Othman I, (Syria's Atomic Energy Commission) 2006,

Saghand Uranium Mine

Uranium mining and pre-processing support facility

Digital Globe Quickbird commercial satellite image

Gachin Uranium Production Plant (Undeclared prior to May 2004)

Reagent storage area

Production Area (leaching/ion exchange/precipitation /drying/packaging)

Ore receiving area

tiushing / grinding circuit (Later modified) - Tailings pipeline

Waste Tailings pond

DigitalGlobe Quickbird commercial satellite image

22 AUG 02

Entrance/secu

 Conclusion: There are lots of potentials for development of Uranium Resource exploration programs in the Middle East.

Hundreds of Anomalies and potential have Identified across the Middle East. Examples were given from Jordan, Saudia, Egypt, Libiya, and Syria, and Algeria.

Recommendation: Utilization of petroleum drill data for oil exploration (Gamma ray Logs!)

