### Performance Evaluation of Metallic Fuel for SFR

International Conference on Fast Reactors and Related Fuel Cycles (FR09), Kyoto, Japan 9 December 2009

### Byoung Oon LEE

KAERI Research Institute

### Outline









### Introduction

□ Metal fuel development project for SFR in Korea

- U-TRU-Zr metallic fuel
- -Cladding material : FMS
- □ The performance analysis is essential to assure an adequate fuel performance and its integrity
- The present study represents progress results of evaluating the performance of metal fuel for SFR in Korea





### **Fuel Performance Evaluation**





## **Metal Fuel Configuration**







- I.1 Diffusion couple tests without barrier
- I.2 Diffusion couple tests with a metallic foil barrier
- I.3 Diffusion couple test with a surface treatment



### **II.1 Diffusion couple tests without barrier**

# □ Diffusion couple tests of U-Zr-(0, 2)Ce with FMS (700℃)

- Various interaction phases
- Major phase : UFe<sub>2</sub>, U<sub>6</sub>Fe, and ZrFe<sub>2</sub>
- Similar results of US and JAPAN
- □ Diffusion couple tests of U-Zr-(0, 2)Ce with FMS (740 ℃)
  - Thickness of the interaction region : different from Keiser's observation
    - microstructures were similar
  - Gray phase of UFe<sub>2</sub>, dark one of Zr rich-line layer, and mixed phase with U and Zr were observed



U–10Zr vs. HT9 (700 ℃, 96 h)



U–10Zr vs. HT9 (740℃, 96 h)



### **II.1 Diffusion couple tests without barrier**

### □ U-10Zr and HT9 (800°C, 25h)

- -SEM revealed that the clad lost about  $250\mu$ <sup>m</sup> of its thickness
- -From the EDX
  - U, Fe and Cr diffused into each other at the opposite direction

✓ U-Zr-Fe-Cr compound as  $U_6(Fe,Cr)$ ,  $Zr(Fe,Cr)_2$ , and  $U(Fe,Cr)_2$ 



U–10Zr vs. HT9 (800℃, 25 h)



### **II.2 Diffusion couple tests with a metallic foil barrier**

- Diffusion couple tests of U-Zr-(0, 2)Ce were carried out for the barrier foils
  - -Zr, Mo, Nb, Ti, Ta, V, and Cr

### 🗅 Zr

-dissolved into the matrix

-its thickness was significantly reduced

### 🛛 Mo

-part of the Mo element reacted with the U-10Zr fuel

🛛 Nb, Ti

 barrier elements and the fuel diffused into each other so that the reaction layer was formed.

🛛 Ta

– EDX analysis revealed that Ta reacted with the fuel, where it diffused into the fuel component.



### **II.2 Diffusion couple tests with a metallic foil barrier**

### 

- no reaction between the barrier material and the fuel component
  - Inter-diffusion was completely prevented
- EDX analysis revealed that there was no U in the V layer.
- V–Fe–Zr layer was observed between the V foils and the FMS
  - measured composition : 93.5 at.%V–4 at.%Fe–2.5 at.%Zr.
  - Reduction of V foil thickness

#### Cr

- Neither inter-diffusion nor eutectic reaction
- V and Cr exhibited the most promising performance



U–10Zr and HT9 with a V barrier foil (800℃, 25 h)

#### Summary of the metallic foil barrier performance

| Element | Eutectic melting<br>prevention | Element<br>Interdiffusion | Reaction<br>with fuel |
|---------|--------------------------------|---------------------------|-----------------------|
| Zr      | Yes                            | Yes                       | Yes                   |
| Nb      | Yes                            | Yes                       | Yes                   |
| Ti      | Yes                            | Yes                       | Yes                   |
| Мо      | Yes                            | No                        | Yes                   |
| Та      | Yes                            | No                        | Yes                   |
| V       | Yes                            | No                        | No                    |
| Cr      | Yes                            | No                        | No                    |



### **II.3 Diffusion couple test with a surface treatment**

N-100020

- Final application of a barrier cladding requires the barrier in the surface of a cladding tube
  - Electroplating (for Cr) and vapor deposition (for Zr and V)

# □Cr barrier electroplated on FMS

- Cr prevented the eutectic melting between U-10Zr and HT9 at 700, 740, and 800 ℃.
- Fuel constituent such as U have penetrated locally along the crack in the barrier
  - uranium compound along the clad surface

12



Cr

U-10Zr and HT9 with the electroplating of Cr after the diffusion couple test (800 ℃, 25 h)

- It seems that a crack affects the fuel-cladding interaction in a negative way
  - further analysis will be carried out to investigate the exact phenomenon



HT9

### **II.3 Diffusion couple test with a surface treatment**

### **Zr-vapor-deposited barrier**

- -no visible phase formation
- excellent barrier performance, contrary to the case of the Zr metallic foil
- further analysis will be continuously carried out

### **UV-vapor-deposited barrier**

- not effectively prevent interdiffusion contrary to the V foil
- It seems that the thickness of V (~1.3 µm) was too thin
- Diffusion couple test will be carried out with thick barrier cladding



U-10Zr vs. HT9 with the Zr vapor deposition (800 ℃, 25 h)



U-10Zr vs. HT9 with the V vapor deposition (800 °C, 25ch) Atomic Energy KAREN Research Institute





# **Fuel irradiation test**

- □ Schedule
  - 2010 : irradiation in HANARO
  - 2008-2009 : irradiation capsule design and fabrication
- Objectives
  - Identify the Ce-bearing fuel performance and the characteristics of barrier cladding
- □ Irradiation condition
  - Fuel : U-10Zr and U-10Zr-6Ce
  - Cladding : FMS
  - Maximum burnup : 3 at% (1st HANARO irradiation test)
  - Linear power : 306 W/cm,
  - Expected duration : ~150 EFPD
- □ Fast reactor condition
  - Thermal neutron flux filter : Hf or Boral plate
  - Fuel temp. control : He gap
  - Fuel/cladding gap bonding :Na







## Irradiation capsule

- □ Capsule design
  - Two test sections
    - each section accommodates six rodlets
  - The fuel rod is contained in the sealing tube for safety in case of sodium leakage from the cladding



#### Irradiation capsule dimension

| Fuel      |                              | Cladding       |                | Outer tube     |                |
|-----------|------------------------------|----------------|----------------|----------------|----------------|
| Dia. (mm) | Density (g/cm <sup>3</sup> ) | Outer dia.(mm) | Inner dia.(mm) | Outer dia.(mm) | Inner dia.(mm) |
| 3.7       | 15.8                         | 5.5            | 4.6            | 8.62           | 5.62           |





# IV.1 Thermal conductivity modelIV.2 Fuel constituent migration model



# MACSIS CODE

#### □ Main structure

- Fuel temp. calculation routine
- FGR calculation routine
- Cladding deformation calculation routine

#### Main Function

- > Axial and radial temperature distribution
- Fission gas release including He release
- Fuel constituent migration
- Cladding deformation by plenum pressure
- Cumulative damage fraction (CDF)
- Probabilistic estimation of CDF in connection with Weibull analysis
- Cladding wastage effect by eutectic melting
- FCMI by solid fission product
- ➡ MA (+ RE) bearing metal fuel behavior model is now developing



#### **MACSIS Flow Chart**



Korea Atomic Energy KAERN Research Institute

# **IV.1 Thermal conductivity model**

- RE is precipitated in the U-Zr matrix
  - cause a variation of fuel properties
- The effect of the Ce precipitates on effective thermal conductivity is evaluated
  - based on models for heterogeneous materials such as Maxwell and Bruggeman models
- Thermal conductivity of the U-Zr alloy is reduced
  - with an increasing Ce content
- □ Addition of Ce up to 6 wt%
  - reduce the thermal conductivity of the U-Zr alloy by less than 5%.
    - low volume fraction of the Ce phase
    - relatively high thermal conductivity of Ce



Effect of the Ce content on the thermal conductivity of U-10Zr



## **IV.1 Measured thermal conductivity**

# The measured thermal conductivity of the U-Zr-Ce alloy

- by the product of the thermal diffusivity, density, and specific heat
  - Thermal diffusivity : laser flash method
  - Density : immersion technique
  - specific heat : Kopp-Neumann's law
- Thermal conductivity of U-Zr lies in between the Billone or Takahashi's evaluation
  - The effect of Ce on the thermal conductivity of U-Zr alloy is well described by the present heterogeneous mixture models



# Comparison of the thermal conductivities for U-Zr-Ce alloys



# **IV.2 Fuel constituent migration model**

### U-Pu-Zr Migration

- Based on the Ishida's model and Hofman's theory
- Reconstruct the quasi-binary U-Zr phase diagram by Ishida's Concept
- Assumption of the diffusion coefficient by Hofman's theory

### Am migration model for U-TRU-Zr

- by using the U-Pu-Zr migration model
- The radial profile of Zr redistribution
  - The main reason for the migration is the radial solubility change of Zr
  - The heat of transport also plays an important role in the migration
  - depletion of Zr in the middle zone was simulated
  - value of the heat of transport : more than -100,000kJ/mole.



#### Radial distribution profile of Zr



# **IV.2 Am migration**

- □ Am migration
  - calculated by using the MACSIS code and the X501 data
- The migration behavior of Am is similar to that of Zr
  - -100,000kJ/mole of the heat of transport was also used
- Simulated Am migration for the X501 fuel
  - Am migration along with the migration of Zr was simulated
  - At around 700°C of the fuel centerline temperature, the model predicted that the Am fraction in the fuel center reaches its peak
  - There were no centerline Am depletions expected in all range of temperature



#### Radial distribution profile of Am







# **Design Criteria**

### No Fuel Melting

-Fuel Temperature  $\leq$  solidus temperature

### □ No Eutectic Melting

- -No eutectic liquifaction
  - Fuel Surface Temperature (TRU% < 19wt%)  $\leq$  700  $\,^\circ\!\mathrm{C}$
  - Fuel Surface Temperature (TRU%  $\geq$ 19wt%)  $\leq$  650  $^{\circ}$ C

### Cladding Limit

- -Strain limit criteria
  - Thermal creep strain : 1%
  - Total strain : 3%
  - Swelling : 5%
- -Cumulative Damage Fraction (CDF) limit criteria
  - Steady state operation : 0.001
  - Transient operation : 0.2



|                                                 | KALIMER-600<br>(case 1 core)      | Preliminary case 1<br>of SFR conceptual design |  |
|-------------------------------------------------|-----------------------------------|------------------------------------------------|--|
| Fuel Slug Contents (wt%)                        | U-12.6Pu-0.5Am-0.09Cm-0.06Np-10Zr | U-30TRU-Zr                                     |  |
| Smeared Density (%)                             | 75                                | 75                                             |  |
| Cladding Material                               | Mod.HT9                           | Mod.HT9                                        |  |
| Pin Outer Diameter (mm)                         | 9.0                               | 7.0                                            |  |
| Cladding Thickness (mm)<br>- Inner/middle/outer | 1.00/0.72/0.59                    |                                                |  |
| Plenum-to-fuel ratio                            | 1.75                              | 2.25                                           |  |
| Fuel Slug Length (mm)                           | 940                               | 868                                            |  |

# **CDF Limit Analysis for KALIMER-600**

### □ HT9

- CDF > 0.001
- when the cladding temperature becomes higher than 625 ℃

### □ Mod.HT9

- CDF > 0.001
- when the cladding temperature becomes higher than 645 ℃.
- □ 625 and 645 °C are selected as the peak clad temperature
  - for the HT9 clad and the Mod.HT9 clad for the Case-1 core, respectively.



CDF as a function of operating temperature for KALIMER-600 (Case-1 core)



# **CDF LIMITS FOR SFR Preliminary design**

#### □ CDF <0.001

- Cladding temperature :650 °C
- P/F ratio: 2
- R/th ratio : 5.5
- □ If the P/F ration was enlarged to 2.25
  - R/th ratio needed to satisfy the CDF limit : 6
- □ If the plenum-to-fuel ratio was enlarged
  - It was expected that the Mod.HT9 cladding satisfied the CDF limit at the discharge burnup goal
- Sensitivity analysis according to the design parameter will be performed continuously



CDF according to the cladding temperature, P/F ratio, and R/th ratio







## Summary

Sodium-cooled fast reactor(SFR) is being developed in combination with the pyro-processing of spent fuel

-U-TRU-Zr metallic fuel is a reference fuel for SFR

# Fuel performance evaluation is being performed in the following tasks;

- -fuel-cladding diffusion couple tests
- -fuel irradiation test
- -performance analysis model development
- -fuel design
- □ This work forms the basis for establishing key technology that will evaluate the performance of U-TRU-Zr metallic fuel.

