

International Conference on Fast Reactors and Related Fuel Cycles (FR09) - Challenges and Opportunities -

RESULTS OF POST-IRRADIATION EXAMINATION OF INERT MATRIX FUEL COMPOSITIONS IRRADIATED IN BOR-60 REACTOR UP TO 19 at.% UNDER THE RUSSIAN-FRENCH EXPERIMENT BORA-BORA

F.N. Kryukov, S.V. Kuzmin, **O.N. Nikitin,** L.M. Zabudko, I.S. Kurina, B.D. Rogozkin, Yu.A. Ivanov, J. Noirot, S. Bejaoui

1

In the frame of the MINATOM (Russia) - CEA (France) collaboration...

Selection and development of techniques to produce inert matrix fuel compositions and research of their radiation resistance are actual for use of plutonium and transmutation of minor-actinides.

In the frame of the MINATOM (Russia) - CEA (France) Agreement on fast sodium reactors experiment BORA-BORA was performed to investigate different fuel compositions with high plutonium content under the BOR-60 conditions. Among them:

Fuel composition 1: 40% PuN+60% ZrN – 2 fuel pins.

Fuel composition 2: $40\% PuO_2 + 60\% MgO - 2$ fuel pins.

Manufacturing characteristics

Fuel composition	40%PuN+60%ZrN	40%PuO ₂ +60%MgO
Pin number	7R, 9R	13PI, 23PI
Pellet density (%Dth)	84	89
Pellet diam. (mm)	5.9	5.9
Diam. Gap (µm)	200	200
Grain size (μm)	25-30	1-10
Fissile stack length (mm)	450	450
Crystalline lattice parameter, nm and Phase composition	0.476 – Pu(Zr)N; 0.470 – Zr(Pu)N Solid solutions (differing ratio Pu/Zr)	$\begin{array}{c} 0.5395-PuO_2\\ 0.5198-Pu_2O_3\cdot 2PuO_2\\ 0.4211-MgO\\ PuO_2+Pu_2O_3+MgO\\ \hline \end{tabular} Mechanical mixture \end{array}$
Microstructure		

Irradiation data

Fuel pin	Fuel composition	Irradiation time, day	Max. burn up (at. %)	Linear power (kW/m)	Max. clad. temperature, °C	<i>Damage dose in steel, dpa</i>
9R	40%PuN +60%ZrN	514	11.3	20.7	547	23
7R	40%PuN +60%ZrN	900	19.4	20.7	543	43
23PI	40%PuO ₂ +60%MgO	514	11.1	10.0	551	23
13PI	40%PuO ₂ +60%MgO	900	19.0	10.0	514	43

Post-Irradiation Examinations

(fuel pin with 40% PuN+60% ZrN, burn up 19.4 h.a. %)

Non Destructive Testing:

- visual control there were no anomalies;
- ✓ leak-tightness control (⁸⁵Kr) leak-tight;
- ✓ gamma-scanning no anomalies in the distribution of fission products;
- ✓ profilometry increase of the fuel pin diameter less than 20 microns

Similar results have been obtained for fuel pin with 40% PuO₂+60% MgO, burn up 19 h.a. %

Non Destructive Testing:

visual control - there were no anomalies;

leak-tightness control (⁸⁵Kr) - leak-tight;

✓ gamma-scanning - no anomalies in the distribution of fission products;

✓ profilometry - increase of the <u>fuel pin diameter</u> less than 20 microns

GAS PHASE IN FUEL PINS (B≈19 h.at. %)

Fuel	Gas	Gas	Gas	s conto vol.%	ent,	GFP	GFP	
composition	fuel pin, MPa (n.c.)	cm ³ (n.c.)	Не	Kr	Xe	cm ³ (n. c.)	release, %	
40%PuN +60%ZrN	0.09±0.02	11±2.6	83	1	12	1.4	1	
40%PuO ₂ +60%MgO	0.13±0.02	17±2.6	62	2.4	34	6.1	9	

✓ Low level of gaseous fission products release

Macrostructure of Irradiated composition

40% PuN+60% ZrN

DESTRUCTIVE EXAMINATIONS: 40%PuN+60%ZrN

Area of	Mass fraction, % (EPMA)							
examination	Pu	Zr	Nd	Хе	Cs	Мо	0	Ν
Light phase	25.1 ±2.4	61.1 ±3.1	0.55 ±0.05	0.8 ±0.3	0.64 ±0.13	0.56 ±0.01	1.2 ±0.4	10.9 ±3.8
Grey phase	74.4 ±1.4	6.9 ±1.4	0.9 ±0.2	0	0	1.14 ±0.08	13.5 ±1.7	0

Crystalline lattice parameter, nm

Unirradiated	0.476; 0.470 Pu(Zr)N; Zr(Pu)N		
Burn-up 11.3 % at.	0.46432±0,00005 Zr(Pu)N		
Burn-up 19.4 % at.	0.46484±0,00004 Zr(Pu)N		
ZrN	0.4577		
PuN	0.4905		

 Two main phases – solid solutions based on zirconium and plutonium nitrides differing in their ratio and FP content

DESTRUCTIVE EXAMINATIONS: 40%PuO₂+60%MgO

НИИАР

Material	Crystalline lattice parameter, nm			
Unirradiated fuel	0.5395 ±0.0001 (PuO ₂) 0.5198 ±0.0001 (Pu ₂ O ₃ · 2PuO ₂) 0.4211 ±0.0001 (MgO)			
Burn-up 11.1 % at.	0.53885±0.00006; 0.42140±0.00001			
Burn-up 19 % at.	0.53816±0.00004; 0.42178±0.00003			
MgO	0.4211			
PuO ₂	0.5396			

SEM

✓ The irradiated fuel composition consisted of two phases - PuO₂ and MgO with the crystalline lattice parameters differing from those of pure chemical compounds;

✓ The EPMA showed the fission products in the plutonium-containing phase and in the magnesium-containing one.

DENSITY AND SWELLING RATE OF FUEL COMPOSITIONS

Fuel	Burnup, % h.at.	Density, g/cm³	Average swelling rate, %/ 1% at.
	Unirradiated	7.45 ±0.05	
40% PuN +60% ZrN	11.1	7.46±0.07	~ 0.1
	19	7.33±0.04	
	Unirradiated	4.46±0.02	
40% PuO ₂ + 60% MgO	11.3	4.07 ± 0.04	~ 0.7
	19.4	3.92 ± 0.02	

✓ Low Swelling rate of 40% PuN+60% ZrN

✓ Swelling rate of 40% PuO_2 + 60% MgO is about the same as of MOX fuel

CONCLUSION

All the obtained results allow made a conclusion about the expediency of further investigation of PuO_2+MgO and PuN+ZrNcompositions up to higher burnup and at higher content of a fissile component.