

Simulations of Turbulent Diffusion in Wire-Wrapped Sodium Fast Reactor Fuel Assemblies

W. D. Pointer, P. Fischer, J. Smith, A. Obabko, A. Siegel Argonne National Laboratory

International Conference on Fast Reactors and Associated Fuel Cycles 7-11 December, 2009 Kyoto, Japan

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Overview

- Background and Motivation
- Multi-scale approach to design and safety analysis
- Review of initial results
- Recent Results
- Full-size assembly simulation benchmarking
- Conclusions and Future Work

Path Forward to Future Commercial ABR's

- Path Forward
 - Design simplifications (reduce mass of steel)
 - Compact reactor vessel
 - Compact intermediate components
 - Advanced compact fuel handling systems
 - New technologies that allow for reduced structural materials inventory and compact piping systems
 - Improved management of design and safety margins

3

Role of Advanced Simulations

- Need to develop multi-resolution modeling approach capable of quantifying the complex interactions from fuel centerline to the ultimate heat sink.
 - This presents a challenge because of the large domains in time (10⁻⁷ seconds to years) and space (10⁻⁶ meters to 10s of meters).
 - In the absence of experiments, higher-fidelity models need to provide accurate, geometry-dependent parameters to lower-fidelity models that can capture much larger domains in both space and time.

T/H Modeling Domains

Thermofluid Code Development

Sub-channel and lumped parameter methods provide low resolution temperature fields for full plant

> LES simulations provide higher resolution 3-D turbulence fields for smaller components → Improved turbulence models for RANS simulation

RANS simulations provide high resolution 3-D temperature fields for large components → Improved models for lower fidelity simulations

DNS simulations provide first principles turbulence fields for small characteristic geometries → Improved sub-grid models for LES simulations

5

Key Findings 06-08: Direct Numerical Simulation of TurbulencePlane Channel + Wire in Cross FlowR. Ranjan & C. Pantano, UIUC

- Single wire in a channel with cross flow simulated at Re_b=6000 using a spectral code: gold standard turbulence benchmark
- 3 million node hours through INCITE award.

Ranjan, Pantano, & Fischer, DNS of swept flow over a wire in a channel, J. Fluid Mech., 2009 (in review).

Key Findings 06-08: LES of SFR Subassemblies

7 pin wire-wrapped assemblies

P. Fischer, A. Obabko and J. Lottes, Argonne

- Transition to turbulence with inflow/outflow boundary conditions occurs at $z\sim30 D_h$
 - Verified in: single-pin x periodic array and 7-pin x 3H subassembly
 - Therefore: axial periodicity is warranted \rightarrow significant savings (10 x)

Transition in a 7-pin subassembly with laminar inflow conditions

- LES and RANS simulations give comparable results for cross-flow distributions in 7-pin case:
 - We have a mechanism for validating RANS, which gives considerable savings.
 - Data provides direct input to core-scale simulations

Key Findings 06-08: RANS Simulations of SFR Assemblies

7-37pin wire-wrapped assemblies

- Demonstrated evolution of flow field from 7 to 217 pin assemblies
 - Reduced importance of bulk swirling and increased complexity of flow field with increasing pin count
 - Fundamental change in flow behavior between 19- and 37-pin assemblies
 - Consistent with evidence in pressure drop data sets

D. Pointer, Argonne and J. Smith, Uldaho

Key Findings 06-08: RANS Simulations of SFR Assemblies

7-37pin wire-wrapped assemblies

D. Pointer, Argonne and J. Smith, Uldaho

- Demonstrated evolution of flow field from 7 to 217 pin assemblies
 - Reduced impotance of bulk swirling and increased complexity of flow field with increasing pin count
 - Fundamental change in flow behavior between 19- and 37-pin assemblies
 - Consistent with evidence in pressure drop data sets
- Benchmarking against conventional subchannel models (SAS4a/ SASSYS-1) reveals introduction of bias in heat transfer throughout assembly by starting point of wire wrap.

Key Findings 06-08: RANS Simulations of SFR Assemblies

7-37pin wire-wrapped assemblies

D. Pointer, Argonne and J. Smith, Uldaho

- Demonstrated evolution of flow field from 7 to 217 pin assemblies
 - Reduced impotance of bulk swirling and increased complexity of flow field with increasing pin count
 - Fundamental change in flow behavior between 19- and 37-pin assemblies
 - Consistent with evidence in pressure drop data sets
- Benchmarking against conventional subchannel models (SAS4a/ SASSYS-1) reveals introduction of bias in heat transfer throughout assembly by starting point of wire wrap.

Power Distribution Difference in predicted temperature

Predicted Dimensionless Pressure Loss Coefficient from RANS Simulations vs. Correlations

- The dimensionless pressure loss coefficient is the pressure drop normalized by the dynamic head, so that Cp=f (L/D).
- The Cheng & Todreas correlation assumes that there are three fundamental subchannel types: interior, edge, and corner. Each of the three types of sub-channel frictional losses is calculated separately. The bundle friction factor is then averaged.
- The Rehme correlation is a simpler single equation formulation based on representative geometric parameters.

Number of Pins	Cheng & Todreas Correlation	Rehme Correlation	RANS Simulation Prediction
7*	$1.116 \pm 14\%$	$1.179 \pm 5\%$	2.282
19	1.088± 14%	$1.041 \pm 5\%$	1.199
37	$1.075 \pm 14\%$	0.943 ± 5%	1.059

* Small 7-pin assemblies are not within the range of applicability of the correlations

LES Simulations of 217 pin assemblies

- Using spectral element code Nek5000
 - Single wire pitch H with periodicity in the axial direction
 - Reynolds number reduced to Re_D=15000 to reduce computational burden
 - Based on prior experience with smaller assemblies
 - Confirm scaling with RANS simulations
 - 2.95 million spectral elements of order N=7 (n=1.01 billion)
 - Have also run N=9 (n=2.1 billion)
 - Under-resolved particularly axially
 - 4x larger than any previous Nek5000 run

LES Simulations of 217 pin assemblies

- Using spectral element code Nek5000
 - Single wire pitch H with periodicity in the axial direction
 - Reynolds number reduced to Re_D=15000 to reduce computational burden
 - Based on prior experience with smaller assemblies
 - Confirm scaling with RANS simulations
 - 2.95 million spectral elements of order N=7 (n=1.01 billion)
 - Have also run N=9 (n=2.1 billion)
 - Under-resolved particularly axially
 - 4x larger than any previous Nek5000 run

RANS Simulations of 217 pin assemblies

- Using commercial code STAR-CCM+
 - 5 wire pitches, 5H, with inflow/outflow boundary conditions
 - Reynolds number reduced to Re_D=15000 to match LES conditions
 - 22 milion cells
 - Have also run n=44million
 - Under-resolved particularly axially

Benchmarking of LES vs RANS

- Extract field data along selected planes.
- Calculate velocity component normal to plane
- Average data across plane to collapsed data to an axial profile of average normal velocity

Benchmarking of LES vs RANS

- Extract field data along selected planes.
- Calculate velocity component normal to plane
- Average data across plane to collapsed data to an axial profile of average normal velocity

RANS Simulations Re_h=15000 vs Re_h=108,000

RANS Simulations Re_h=15000 vs Re_h=108,000

Conclusions

- A series of LES and RANS based CFD simulations of a 217-pin wire-wrapped sodium-cooled fast reactor fuel assembly have been completed
 - initial benchmark of RANS models against high fidelity LES simulations in large wire wrapped pin bundles.
- Initial comparisons show that RANS and LES predict similar transverse flow fields within the assembly – a well mixed flow through the central channels and a swirling flow through the edge channels along the assembly boundary.
 - Much different than the flow field in 7- and 19-pin assemblies where swirling flow dominates
- Comparisons of RANS to 1-D subchannel simulations reveal bias in temperature distribution as a consequence of azimuthal starting position of the wire relative to can wall.
- Comparisons of detailed inter-channel exchange velocity profiles show that the two methods generally agree.
 - RANS simulations tend to predict more inter-channel mixing
 - Less turbulence generation on the windward side of the wire wrap spacer

Current Efforts: Turblent Diffusion

- Benchmarking of turbulent diffusion based on legacy experiments
- Water experiments using conduction probes to track plume diffusion
 - Use single injection port in variety of sub-channel locations
- For the interior channels, one observes that fluid is swept into the channel from which the wire is exiting.
- Discharge into the other subchannels is not evenly split between the neighboring subchannels – there is a significant bias for the flow to follow the wire
- By z=H, the peak concentration has typically moved two or three channels.

Current Efforts: Design Studies

- Alternative edge channel geometries
- Wire wrap vs. Spacer Grid

Questions?

