

Neutronics Code Development at Argonne National Laboratory

2009 International Conference on Fast Reactors and Related Fuel Cycles December 7-11, 2009 Kyoto, Japan

M. A. Smith, D. Kaushik, A. Wollaber, W. S. Yang and B. Smith Argonne National Laboratory

Fast Reactor Modeling and Simulation Challenges

- Detailed energy modeling
 - Lack of a 1/E spectrum as a basis for resonance absorption calculation
 - Inelastic, (n,2n), anisotropic scattering are of great importance
- Long neutron mean free paths
 - Neutron leakage is enhanced, 25% at moderate sizes
 - Local reactivity effects impact entire core
- High leakage and heterogeneous core configurations challenge design methods
 - Transport effects are magnified
 - Spectral and directional transitions at the core and reflector interface are hard to model
 - Core reactivity is sensitive to minor geometric changes
 - Integration with thermal-hydraulics and structural mechanics analyses to account for reactivity feedbacks due to geometry deformation accurately

High Fidelity Modeling, What is the point?

- The existing approach: Homogenized assembly
 - Vast reduction of space-angle-energy dofs
 - Focused on producing the global gradient
 - Reconstruct: local and global solution must be merged
- Explicit geometry core calculations?
 - >10¹⁰ degrees of freedom requires some parallelism
 - Few large problems have been attempted
- Can we improve the existing calculation accuracy?
 - Not really concerned about depletion in short term
 - Errors in cross section data? Multi-group processing?
 - Material loading uncertainties
 - Are we solving a contrived problem; i.e. predicting the weather?
 - Not the case for ZPR and other similar benchmarks. Production reactors?
- Safety analysis was identified as one area of weakness that can be improved
 - Radial thermal expansion is generally treated poorly in neutronics
 - Above core mixing (thermal induced stress) is poor in CFD
 - Modeling of seismic event impacts on core and plant?

> Considerable development lead time before significant results can be achieved

Status of UNIC Code Development

- "Allow the existing reactor analysis work to transition smoothly from assembly level homogenization to less crude homogenization and eventually to fully heterogeneous descriptions"
 - Diffusion theory structured geometry solver (NODAL)
 - Reproduce nodal diffusion capability in existing tools
 - Can be extended to $1^{\,\text{st}}$ order $S^{\,}_{N}$ or VARIANT
 - Even-parity transport equation with spherical harmonics (PN2ND)
 - Immediate use on problems with significant homogenization
 - Method of Characteristics (MOCFE)
 - Long term deployment and use on problems without homogenization
 - Even-parity transport equation with discrete ordinate (SN2ND)
 - Modeling transition region between PN2ND and MOCFE solvers
 - Still has the second-order limitations (voids?)
 - We still prefer to homogenize similar regions
- MC²-3 module for in-line multi-group cross section generation
 - Hyperfine (~400,000) group transport capability for homogeneous mixture and 1-D slab and cylindrical geometries. Started 2-D work.

Parallelism in UNIC

- Novel?
 - Parallel transport studied for well over a decade
 - LANL, Sandia, French, Japanese,...
 - Production tools?
 - Unstructured mesh capabilities?
 - Parallel capabilities?
- Lessons learned at ANL
 - Parallelization in space-angle-energy is necessary
 - There are small, medium, and large parallel machines
 - Spatial domain decomposition is not best for all
 - Angle decomposition for \boldsymbol{S}_N is generally good up to a limit
 - We have not studied energy decomposition at this point
 - Focused parallelization of L is not necessarily best idea

$$\begin{cases} A_1 & 0 & 0 \\ \vdots & \ddots & 0 \\ W_{1 \to G} & \cdots & A_G \end{cases} + \begin{bmatrix} W_{1 \to 1} & \cdots & W_{G \to 1} \\ 0 & \ddots & \vdots \\ 0 & 0 & W_{G \to G} \end{bmatrix} \rbrace \begin{bmatrix} \Psi_1 \\ \vdots \\ \Psi_G \end{bmatrix} = \begin{bmatrix} S_1 \\ \vdots \\ S_G \end{bmatrix}$$

- Capabilities
 - PN2ND: 500-3,000 processors (2007)
 - SN2ND: 1,000-300,000+ processors
 - MOCFE and NODAL: unknown

Existing Approach (Assembly Homogenization)

- Typical approach used in fast reactor physics today
 - VARIANT residual error is due to P_N order and source approximation
 - Used 4th order source, 8th order flux, and 3rd order leakage
 - PN2ND residual error is due to P_N order and spatial mesh refinement
 - Used 109,740 hexahedral elements with 461,219 vertices
 - SN2ND residual error is due to spatial mesh refinement
 - Used Carlson even-moment (level symmetric) cubature

ABTR 33 group (120 periodic)

Eigenvalue error (pcm)

Angular Resolution	VARIANT	PN2ND	SN2ND
1	-1588	-1594	-192
2	-237	-249	-1
3	-91	-109	-69
4	-47	-70	-47
5		-55	-51

Assembly Level Homogenization (cont...)

- VARIANT can easily out perform PN2ND and SN2ND
 - Uses hybrid finite element (nodal) combined with spherical harmonics
 - Spatial approximation includes discontinuities in even- and odd-parity flux
 - Defines much fewer degrees of freedom in assembly homogenized problems
 - Not currently ideal for all problems
 - 1/6 hexagonal ABTR with 230G, P_5 - S_5 requires 14 hours of cpu time (5.10⁸ dofs)
 - ZPR drawer homogenized problems have convergence problems
 - Cannot treat void or pure scattering regions
- PN2ND uses UFE combined with spherical harmonics
 - Even-parity unstructured mesh treatment assumes continuous even-parity flux
 - Requires careful boundary layer meshing (key weakness of method)
 - Increased memory storage relative to VARIANT and bandwidth limited flop rate
 - Uses a parallel CG operation on the WG space-angle system
 - Preconditioner is just diagonal angular sub-system
 - Use SSOR in parallel CG solver from PETSc on each angular sub-system
- SN2ND uses UFE combined with discrete ordinates
 - Mesh related problems are identical to PN2ND
 - Uses a scattering source iteration on WG space-angle system (CG on L⁻¹)
 - Uses diagonal angular sub-system preconditioner
 - Uses SSOR via parallel CG solver in PETSc
 - Started development of multi-level h multi-grid preconditioner

Plate by Plate ZPR6 Geometry

- Over a period of 30 years, more than a hundred ZPR critical assemblies were constructed at Argonne National Laboratory: ZPR-3, ZPR-6, ZPR-9 and ZPPR.
- The geometrical information for selected loadings is now widely available (ICSBEP)
- Materials are very well known compared with existing production reactors.
- In addition to experimental validation we can compare with CE MCNP/VIM solutions
- No concerns for multi-physics coupling

Standard Homogenized Approach

- Used 1-D "equivalent" lattice cell calculation to generate cross sections in MC²-3
 - Homogeneous solution only gives the global gradient
 - Done to capture foil reaction rates and compare other reactor physics parameters
 - Need to combine global gradient with lattice cell calculation to extract solution
- Reference solution is experiment (i.e. critical)
 - SN2ND: 0.99966 VIM: CE 0.99981±0.00025
 - Ignoring plate heterogeneity
 - SN2ND: 0.99344 VIM CE: 0.99400±0.00020
- We have obtained similar results on ZPR 6/7 and ZPPR-15
- We are focused on using 2-D MOC for future cross section generation

Plate-by-Plate ZPR6 Assembly 6A

- SN2ND cannot handle explicit voids
 - Not really an issue for this problem
 - Development: $2 \cdot 10^6 \rightarrow +50 \cdot 10^6$ vertex mesh
 - 33 group calculation requires ~40 minutes on full parallel machine (~700 billion dof)
- Cross sections generated with 1-D lattice cell
 - The implementation of these cross sections in the explicit geometry model is not consistent.
 - The cross section data representation is inaccurate

Exact Geometry

- Maximum of 116 group with P₅ scattering (9, 33, 70, 116)
- Maximum 50,000,000 vertex mesh (cubic hexahedrons)
- Maximum S₂₈, (LT or DLT)

Just EU plates

Flux Solution for ZPR6 Assembly 6A Experiments

- Local gradients on drawers exhibit global gradient
- Resolved spatial gradients should result in better foil reaction rates

SN2ND Parallel Performance

Strong spatial scaling of 94% on BlueGene/P-ANL

Mainly measurement of PETSc	Parallel Efficiency	Total Time (seconds)	Vertices/ Process	Total Cores
Strong scaling	100%	2,402	7,324	8,192
in angle is <75%	92%	1,312	3,662	16,384
Diffusion equation nee further partitioning	92%	873	2,441	24,576
	94%	637	1,831	32,768

Weak angle scaling of 75% on XT5. 76% on BlueGene/P 294,912 cores JSC

Total Cores	4π Angles	Total Time (seconds)	Weak Scaling
16,512	32	1891	100%
37,152	72	1901	99%
66,048	128	1829	103%
103,200	200	2050	92%
148,608	288	2298	82%
222,912	432	2517	75%

Weak scaling in space means mesh refinement for us

This can be good and bad. Refinement of bad aspect ratio elements produced >95%

Lessons Learned from ZPR

- Cross sections are not sufficiently accurate
 - 1-D model is appropriate and proves to be accurate for drawer average cross sections
 - Equivalence theory used to generate self-shielded ultrafine group cross sections is approximate
 - A hyperfine group (i.e., pointwise) calculation can help
 - Plate-by-plate cross sections may reduce the error, but the fundamental issue is that the global gradient is not seen in the cell lattice problem (either 1-D slab or 2-D MOC)
- New approach: Improve accuracy of legacy methodology
 - Incorporate global and local gradients via a 2-D MOC solution
 - Generate drawer homogenized cross sections
 - Use SN2ND or improved VARIANT to solve global homogenized problem
- With new capability we will research using plate-dependent cross sections in the radial plane

Flux at 243 keV on Log Scale Top is ~lattice calc. Bottom is real world

The Future for Fast Reactor Cross Sections?

- In 2007 we researched a 3-D MOC for fine level solution
 - 10,000 to 1 element comparison with SN2ND
 - Parallel algorithm is relatively immature; ours was not scaling
- In 2009 we rebuilt 2D and 3D MOCFE solver
 - Easier to modify/maintain/develop
 - Faster ray tracing, exact domain surface discretization
 - Assumed a Krylov subspace method for spatial decomposition
 - More appropriate path for large scale parallelism
 - Assumes trajectory splitting and communication of trajectory flux
 - Needs research into good preconditioner (synthetic diffusion?)

MOCFE continued

- New version is >10 times faster than old version
- Validated "accuracy" on C5G7, CANDU, ABTR geometries
- Working on PWR, BWR, VHTR, and ZPR geometries
- Haven't tested out any parallel options
- Haven't tested out the Krylov solver options
- Have no clue how well it compares to other MOC solvers

Future Work and Key Issues

- SN2ND
 - Implement multi-level h-multigrid preconditioner scheme
 - Implement error estimator for intelligent mesh refinement and accuracy assessment
 - Investigate parallel decomposition of energy with Krylov subspace methodology
 - > Even with ~300,000 cores, direct whole core transport calculations are not practical yet
- Cross Section Generation
 - Optimize MC²-3 code for speed and investigate parallel execution of work
 - Fully validate 1-D, 2-D, and 3-D MOCFE for parallel execution of space-angle-energy
 - Investigate option to use localized hyperfine-group spectrum calculation with fine-group whole core transport calculation
- "Intermediate" fidelity methods to perform routine design calculations (<<1000 processors)
 - 2D MOC calculation for cross section generation
 - New homogenization and group collapsing schemes
 - PN2ND or SN2ND calculation with homogenized pin-cell
 - Improved NODAL based code with assembly homogenization
 - Is there a potential for 2D/1D coupled schemes like DeCART?