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Background 

• In the light of  the accident at the Fukushima Daiichi NPP, 

– 3 Phases existed for mid- and long-term plans 

 

 

 

 

 

• Technical plans in various aspects: 

– Direction on recovery and treatment,  

– Characterization,  

– Conditions and long term performances, and  

– Possibility of  treatment path for toxicity reduction. 
 

Fuel removal 

from the 

pool 

Removal of  fuel debris Removed, processed, and disposed fuel debris 

with proper waste management 

1st: 2 years            2nd: Next 10 years                         3rd:  In 30 – 40 years 



Separation Methods 
• Possible fuel debris treatments due to previous 

studies on debris samples in TMI-2. 

• Aqueous and Pyrochemical separation methods 

– PUREX –dissolving in nitric acid and fluoric acid 
showing that neither 6 N HNO3 nor 3 M HNO3 + 1 
M HF mixture could be used to dissolve the actual 
debris. 

– Japan Atomic Energy Agency (JAEA) and Central 
Research Institute of  Electric Power Industry 
(CRIEPI) – advantage on pyrochemical treatment in 
term of  solubility of  debris and secondary waste 
volume through oxide reduction tests. 

 



Motivation and Goal 

• No fundamental experiment to further gain 

insight in reprocessing of  the fuel debris after 

electrolytic oxide reduction step.  

  

 

Motivation  

Explore concentration effects on thermodynamic and electrochemical 

properties for U and Zr in LiCl-KCl molten salt system under 

common electroerefiner’s conditions. 

Goal 
Gain fundamental understanding and path forward in applying 

pyrochemical process in order to separate U and Zr efficiently. 



Experimental Program 

a) Al2O3 sheathed thermocouple 

b) Tungsten (99.95%) working electrode 

c) Ag/AgCl (99.997%) reference electrode (5 

mol%) 

d) Glassy carbon counter electrode lead 

e) Glassy carbon crucible/counter electrode 

f) MgO secondary crucible 

g) Eutectic LiCl-KCl (99.99%) containing 

dUCl3 (75 wt%) or ZrCl4 (99.95+%) 

h) Kerrlab furnace 

 (a)    (b)  (c)   (d)        

(e) 

(g) 
(f) 

(h) 



Experimental Equipment 

• A quartz electrode assembly was used to position the electrodes 

and thermocouples at reproducible locations. 
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Data Collection 
• All experiments were 

performed and all data was 
collected with a Princeton 
Applied Research VersaSTAT 4-
400 potentiostat and VersaStudio 
software. 

 

• The raw data was imported into 
Excel for further analysis. 

 

• Following the electrochemical 
data collection, the working 
electrode was removed from the 
salt and the wetted length was 
measured to determine the 
active surface area. 

 



Cyclic Voltammetry (CV) 
• A common electrochemical technique 

that can be used to determine 

information about the reactions that 

occur in an electrochemical cell. 

• Potential is repeatedly scanned from one 

vertex potential to another at a constant 

scan rate, ν. 

• Reduction and oxidation reactions occur 

at the electrode surface resulting in 

cathodice (negative current) and anodic 

(positive current) peaks, respectively. 

• Equilibrium potential 
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From the resulting current, reaction information can be determined. 

 Reversible:  soluble/soluble 

 Randles-Sevcik equation 

 

 

 

 

 

 

 Apparent standard potential 

 Irreversible 

 Electrons transferred (irreversible) 

 

 

 

 Delahay equation (irreversible) 

 

 

 Peak Potential (irreversible) 
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Chronopotentiometry (CP) 
• An current-controlled technique that can be used to study time-

dependent concentration change in a solution. 

• A large driving current, Id, is applied and the resulting potential 

is measured as a function of  time. 

 To maintain the applied current, potential drops to a value at 

which ions of  a given species are reduced. 

 When the ion is fully reduced at the electrode surface the 

potential further drops to reduce the next ion. 

 The time of  this potential transition  

 is the transition time, τ. 
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Ref:  Serp, et al., “Electrochemical Behaviour of Plutonium Ion in LiCl-KCl  

         Eutectic Melts,” Journal of Electroanalytical Chemistry, 561 (2004). 



Results: 1.0 wt% UCl3 CV (773 K) 
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Results: 2.5 wt% UCl3 CV (773 K) 
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Results: 1.07 wt% ZrCl4 CVs at 723, 773, & 823 K 



Results: 0.497 wt% ZrCl4 and 9.80 wt% UCl3 

• Uranium behavior dominates with low 

ZrCl4 concentration. 

• Very small contribution of  Zr reactions. 



Results: 4.17 wt% ZrCl4 and 8.34 wt% UCl3 CVs 

ZrCl may not be fully 

reduced to Zr metal, leading 

to the ZrCl oxidation peak. 



Summary 

• CV cathodic and anodic peaks were identified. 

 

 

 

 

 

 

 

 

Peak Cathodic Reaction, 

Location 

Anodic Reaction, Location Reversibilit

y 

U 

A U4+ + e- → U3+, –0.5 V U3+ → U4+ + e-, –0.3 V Reversible 

B Adsorption U3+, –1.5 V Desorption U3+, –0.7 V N/A 

C U3+ + 3e- → U, –1.6 V U → U3+ + 3e-, –1.4 V Irreversible 

Zr 

A Zr4+ + 2e- → Zr2+, –1.06 V 
Zr2+ → Zr4+ + 2e-, shoulder near 

Ba 
Irreversible 

B 

Zr2+ + 2e- → Zr and 

Zr4+ + 3e- + Cl- → ZrCl, –1.5 

V 

Zr → Zr4+ + 4e- and 

Zr → Zr2+ + 2e-, –0.5 V 
Irreversible 

C 
ZrCl + e- → Zr + Cl- and 

Zr4+ + 4e- → Zr, –1.85 V 
NONE Irreversible 
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Cyclic Voltammetry of 0.5 wt% ZrCl4, 10 wt% UCl3, and a 

Mixture of 0.5 wt% ZrCl4 and 10 wt% UCl3 in LiCl-KCl at 773 

K with 200 mV/S Scan Rate 



Cyclic Voltammetry of 10 wt% UCl3, and a Mixture of 0.5 wt% 

ZrCl4 and 10 wt% UCl3 with 2000 mV/s Scan Rate, 0.5 wt% 

ZrCl4 with 500 mV/s Scan Rate (Hoover et al.), and a Mixture 

of 0.99 wt% ZrCl4 and 0.79 wt% UCl3 with 50 mV/S Scan Rate 

(Murakami et al.) in LiCl-KCl at 773 K  

 



Cyclic Voltammetry of 0.5 wt% ZrCl4,10 wt% UCl3, a Mixture of 

0.5 wt% ZrCl4 and 10 wt% UCl3 with 200 mV/S Scan Rate (Hoover 

et al.), and a Mixture of 0.99 wt% ZrCl4 and 0.79 wt% UCl3 with 50 

mV/S Scan Rate (Murakami et al.) in LiCl-KCl at 773 K  


