Atmospheric Dispersion of Radionuclides from Fukushima Dai-Ichi Nuclear Accident and Dose Assessment

FISICHE E NATURALI

<u>Alexandra Ioannidou</u>

Aristotle University of Thessaloniki, Greece, Physics Department Nuclear Physics and Elementary Particle Physics Division

E. Giannakaki

Finnish Meteorological Institute, Kuopio Unit, Kuopio, FI-70211, Finland

S. Manenti, L. Gini and F. Groppi

L.A.S.A Lab., INFN and Universita degli Studi di Milano, Italy

IAEA CN-235, Vienna Austria

Fukushima Nuclear Accident

11 March 2011 earthquake 9.0 and tsunami

- >500 square kilometers flooded
- 20,000 lives lost

Worst civil nuclear accident since Chernobyl in 1986

- Reactor cores severely damaged
- Large radioactive releases (about 10-20% of Chernobyl)

Dispersion of Radionuclides

12 March 2011

after 12 March 2011

Speed at which risk and crisis information flows through the Media

20 years ago:24 hours10 years ago:4 hoursToday (2015):4 minutes

Foreward trajectories modelling, IRSN, FLEXPART, NOAA Hysplit model Projection for the plume

Dispersion of Radionuclides - Projections

Watch the animation on the IRSN website here.

The plume reached the east coast of North America after 3 days

For information regarding the monitoring of radioactive material reaching the United States, please visit the EPA: http://epa.gov/japan2011

Watch the animation on the IRSN website here.

Expecting the plume in Central Europe at around March 24

and this is exactly what happened

Accident de Fukushima IRSN du 12/03/2011

IAEA CN-235, Vienna Austria

Modèle de dispersion : MOCAGE Accident

FRANCE CMRS TOULOUSE

Pathways of exposure to radioactive materials

IAEA CN-235, Vienna Austria

$^{131}\mathbf{I}$, $^{137}\mathbf{Cs}$ and $^{134}\mathbf{Cs}$ in air

HV air Sampler (Staplex TFIA-2)

Flow rate: 1.6-1.7 m³/min (60cfm) Sampling duration: 23 h Total Volume: 2400-2700 m³ Air Volume Uncertainty (2σ): 30-50 m³ Position: Thessaloniki 40°N, Milano 45°N

Glass Fiber Filters TFAGF810

Very high retention of fine particles. 99.98% retention efficiency of 0.3 micron particles.

IAEA CN-235, Vienna Austria

Air-filters analysis by gamma ray spectra

Air filters are measured at least 10h after the end of sampling

¹³¹I- (364 keV) ¹³⁷Cs-137(662 keV) ¹³⁴Cs (605 keV & 796 keV) correction due to summation effect

IAEA CN-235, Vienna Austria

Air-filters analysis by gamma ray spectra

Ge Detector: Relative efficiency 42.3% FWHM 1.8 keV(1332 keV Co-60)

g-spectroscopy, picoSPEC2 (Target) based in DSP technology

IAEA CN-235, Vienna Austria

¹³¹I, ¹³⁷Cs and ¹³⁴Cs in air

Fallout isotopes in surface air				
¹³¹ I	¹³⁷ Cs	¹³⁴ Cs	ratio	ratio
$\mu Bq m^{-3}$	$\mu Bq m^{-3}$	$\mu Bq m^{-3}$	¹³⁴ Cs/ ¹³⁷ Cs	¹³¹ I/ ¹³⁷ Cs
322±35	$< 29^{a}$	$< 26^{a}$	-	-
335±89	59±42	56±37	0.95	5.7
467±25	40±9	37±8	0.92	11.7
323±16	25±9	27±9	1.09	12.9
438±28	26±17	25±15	0.98	16.8
209±33	56±30	54±24	0.97	3.7
229±55	63±30	61±22	0.97	3.6
285±43	^b 27±18	^b 23±14	0.90	10.6
333±73	60±38	56±30	0.94	5.6
343±48	57±26	54±23	0.95	6.0
220±58	47±27	42 ± 20	0.89	4.7
161±34	39±10	^b 13±7	0.33	4.1
118±27	44±17	31±13	0.69	2.7
107±30	29±16	40 ± 14	1.38	3.7
107±38	38±16	23±12	0.62	2.8
128±33	^b 17±16	27±14	1.59	7.5
94±46	35±16	< 11 ^a	-	2.7
^b 60±35	^b 23±16	$< 12^{a}$	-	2.6
< 41 ^a	< 11	33±14	-	-
< 19 ^a	< 16 ^a	< 12 ^a	-	-
< 9 ^a	17±16	22±14	1.34	-
			^a MDA	-1 T 1
	$\begin{array}{c} {}^{131}\mathrm{I} \\ \mu \mathrm{Bq} \ \mathrm{m}^{-3} \\ 322 \pm 35 \\ 335 \pm 89 \\ 467 \pm 25 \\ 323 \pm 16 \\ 438 \pm 28 \\ 209 \pm 33 \\ 229 \pm 55 \\ 285 \pm 43 \\ 333 \pm 73 \\ 343 \pm 48 \\ 220 \pm 58 \\ 161 \pm 34 \\ 118 \pm 27 \\ 107 \pm 30 \\ 107 \pm 30 \\ 107 \pm 30 \\ 107 \pm 38 \\ 128 \pm 33 \\ 94 \pm 46 \\ {}^{\mathrm{b}}60 \pm 35 \\ < 41^{\mathrm{a}} \\ < 19^{\mathrm{a}} \\ < 9^{\mathrm{a}} \end{array}$	Fallout ^{131}I ^{137}Cs $\mu Bq m^{-3}$ $\mu Bq m^{-3}$ 322 ± 35 $< 29^a$ 335 ± 89 59 ± 42 467 ± 25 40 ± 9 323 ± 16 25 ± 9 438 ± 28 26 ± 17 209 ± 33 56 ± 30 229 ± 55 63 ± 30 285 ± 43 $^b27\pm18$ 333 ± 73 60 ± 38 343 ± 48 57 ± 26 220 ± 58 47 ± 27 161 ± 34 39 ± 10 118 ± 27 44 ± 17 107 ± 30 29 ± 16 107 ± 38 38 ± 16 128 ± 33 $^b17\pm16$ 94 ± 46 35 ± 16 $^b60\pm35$ $^b23\pm16$ $< 41^a$ < 11 $< 19^a$ $< 16^a$ $< 9^a$ 17 ± 16	Fallout isotopes in $1^{31}I$ $1^{37}Cs$ $1^{34}Cs$ $\mu Bq m^{-3}$ $\mu Bq m^{-3}$ $\mu Bq m^{-3}$ 322 ± 35 $< 29^a$ $< 26^a$ 335 ± 89 59 ± 42 56 ± 37 467 ± 25 40 ± 9 37 ± 8 323 ± 16 25 ± 9 27 ± 9 438 ± 28 26 ± 17 25 ± 15 209 ± 33 56 ± 30 54 ± 24 229 ± 55 63 ± 30 61 ± 22 285 ± 43 $^b27\pm18$ $^b23\pm14$ 333 ± 73 60 ± 38 56 ± 30 343 ± 48 57 ± 26 54 ± 23 220 ± 58 47 ± 27 42 ± 20 161 ± 34 39 ± 10 $^b13\pm7$ 118 ± 27 44 ± 17 31 ± 13 107 ± 30 29 ± 16 40 ± 14 107 ± 38 38 ± 16 23 ± 12 128 ± 33 $^b17\pm16$ 27 ± 14 94 ± 46 35 ± 16 $<11^a$ $^b60\pm35$ $^b23\pm16$ $<12^a$ $< 41^a$ <11 33 ± 14 $< 19^a$ $<16^a$ $<12^a$ $< 9^a$ 17 ± 16 22 ± 14	Fallout isotopes in surface air ^{131}I ^{137}Cs ^{134}Cs ratio $\mu Bq m^{-3}$ $\mu Bq m^{-3}$ $\mu Bq m^{-3}$ $^{134}Cs'^{1137}Cs$ 322 ± 35 $< 29^a$ $< 26^a$ - 335 ± 89 59 ± 42 56 ± 37 0.95 467 ± 25 40 ± 9 37 ± 8 0.92 323 ± 16 25 ± 9 27 ± 9 1.09 438 ± 28 26 ± 17 25 ± 15 0.98 209 ± 33 56 ± 30 61 ± 22 0.97 229 ± 55 63 ± 30 61 ± 22 0.97 285 ± 43 $^b27\pm18$ $^b23\pm14$ 0.90 333 ± 73 60 ± 38 56 ± 30 0.94 343 ± 48 57 ± 26 54 ± 23 0.95 220 ± 58 47 ± 27 42 ± 20 0.89 161 ± 34 39 ± 10 $^b13\pm7$ 0.33 118 ± 27 44 ± 17 31 ± 13 0.69 107 ± 30 29 ± 16 40 ± 14 1.38 107 ± 38 38 ± 16 23 ± 12 0.62 128 ± 33 $^b17\pm16$ 27 ± 14 1.59 94 ± 46 35 ± 16 $<11^a$ $ < 41^a$ <11 33 ± 14 $ < 41^a$ <11 33 ± 14 $ < 9^a$ 17 ± 16 22 ± 14 1.34

¹³¹I <467 µBq m⁻³

anta@physics.auth.gr

IAEA CN-235, Vienna Austria

¹³¹**I**, ¹³⁷**Cs** and ¹³⁴**Cs** in air

¹³¹I <500 µBq m⁻³

The maximum ¹³¹I activity concentration observed in Milan, Italy was almost similar with the highest value (497 μ Bq m⁻³) observed in Thessaloniki, Greece, and the highest observed value (490 μ Bq m⁻³) in Athens Greece but was lower than the one observed (810 μ Bq m⁻³) in Svalbard [Paatero et al., 2012] and in Lithuania (3700 μ Bq m⁻³, [Lujaniene et al., 2012]).

¹³⁷Cs <63 µBq m⁻³

The max ¹³⁷Cs activity concentration at Milan, Italy was 63 μ Bq m⁻³, while in Thessaloniki, Greece was 145 μ Bq m⁻³ and in Svalbard as high as 675 μ Bq m⁻³.

In most sampling sites is measured only the fraction of ¹³¹I bound to aerosol particles.

The ratio value of of gaseous to total ¹³¹I equal to 0.79, according to measurements in Athens (Potiriadis et al., 2011).

Masson et al. (2011) reported that measurements taken near Fukushima showed that the average ratio of gaseous to total ¹³¹I was around 0.71, while European measurements showed an average gaseous to total ¹³¹I ratio of 0.77.

¹³⁴Cs/¹³⁷Cs activity ratio = 1

Fukushima fallout isotopes at Thessaloniki

¹³⁴Cs/¹³⁷Cs =1

Related to the burn-up history of the nuclear fuel of the destroyed nuclear reactor.

According to Kirchner et al. (2012) the isotopic compositions observed in Europe correspond to emissions from units 1 and 3 of the destroyed Fukushima reactor.

For comparison after the Chernobyl accident the ratio was about 0.5

IAEA CN-235, Vienna Austria

¹³¹I/¹³⁷Cs activity ratio

¹³¹I/¹³⁷Cs activity ratio in Milan (45°) and Thessaloniki (40°)

¹³¹I/¹³⁷Cs decreases with time

The high ¹³¹I/¹³⁷Cs ratio, observed during the first days after the accident, followed by lower values later on, reflects not only the initial release ratio but also differences in volatility, attachment and removal of two isotopes during transportation due to their different physico-chemical properties.

The presence of more than one peak of ¹³¹I and ¹³⁷Cs could indicate "fresh" air masses that arrive from Fukushima in both regions up to the end of April/first days of May.

¹³¹I atmospheric concentrations

¹³¹I maximum 3-4 April ~500 μBq m⁻³

Similar maximum values have been observed during 3-4 April, 2011 in both regions, despite the considerable distance and the possible differences of climatic parameters that may influence the air concentrations of nuclides. But in general, there is a

shift trend in the peak days.

NOAA HYSPLIT MODEL Backward trajectories ending at 1300 UTC 26 Mar 11 GDAS Meteorological Data

The NOAA HYSPLIT model was used to assess the transport pattern and to explain the deviation in radionuclide activity concentrations found.

Thirteen days (312) back trajectories were calculated for different arrival height and for 12 UTC time.

The trajectories are labeled every 24h by a filled symbol.

NOAA HYSPLIT MODEL Backward trajectories ending at 1300 UTC 26 Mar 11 GDAS Meteorological Data

The first maximum in concentration of ¹³¹I (332 µBq m⁻³) was observed at Thessaloniki on **26th of March** 2011.

Air masses were lifted rapidly and transported over the North America to Europe at height of 500 m.

Air masses were also traveled at higher atmosphere levels from Japan. It is also possible that radioactive particles were transported at higher altitudes and may have been removed in the lower layer of the atmosphere due to various reasons, e.g. rainfall characteristics, fog formation or growth of aerosol particles and their deposition.

anta@physics.auth.gr

NOAA HYSPLIT MODEL Backward trajectories ending at 1200 UTC 07 Apr 11 GDAS Meteorological Data

An example of transported air mass at **07 of April 2011** at Milan, Italy is presented.

The results showed a direct transfer from Fukushima across the Pacific Ocean, a transport through the North Pole and a pathway through the Greenland and Iceland at height of 500 m to Milano.

The air masses at higher altitudes were rapidly transported, while the air masses at 500 m exhibited rather slow transport.

NOAA HYSPLIT MODEL Backward trajectories ending at 1200 UTC 07 Apr 11 GDAS Meteorological Data

Although the second maximum of concentration of ¹³¹I that observed at Milan on 7th of April can be attributed to the advection of air masses from Japan at altitude of 500 m, however, the back-trajectory analysis for the same day at Thessaloniki indicates no transport of air masses from Japan, at least for height of 500 and 1500 m.

NOAA HYSPLIT MODEL Backward trajectories ending at 0000 UTC 10 Apr 11 **GDAS** Meteorological Data ш 6 22 40.50 N at ⊀ Source Meters AGL 8000 6000 4000 2000 00 00 00 00 00 00 00 00 00 00 00 00 00 04/0904/0804/0704/0604/0504/0404/0304/0204/0103/3103/3003/2903/28 This is not a NOAA product. It was produced by a web user. Job ID: 333310 Job Start: Sun Feb 19 13:39:26 UTC 2012 Source 1 lat.: 40.5 Ion.: 22.9 hgts: 500, 3000, 5000 m AGL Trajectory Direction: Backward Duration: 312 hrs Vertical Motion Calculation Method: Isentropic Meteorology: 0000Z 08 Apr 2011 - GDAS1

On 10th of April back-trajectory analysis showed a direct transfer from Fukushima across the Pacific Ocean, a transport through the North Pole and a pathway through the Greenland and Iceland to Thessaloniki.

The air masses on that day reach Thessaloniki from Northwest direction and this is possible the reason why no maximum concentration was observed at Milan.

anta@physics.auth.gr

IAEA CN-235, Vienna Austria

¹³¹I, ¹³⁷Cs and ¹³⁴Cs in rainwater

Fallout isotopes in rainwater samples						
Site	Date of Sampling	Volume	Surface area m ²	$ \frac{^{131}I}{mBq L^{-1}} $ $ (Bq m^{-2}) $	$ \frac{^{137}\text{Cs}}{\text{mBq L}^{-1}} $ $ (Bq m^{-2}) $	134 Cs mBq L ⁻¹ (<i>Bq</i> m ⁻²)
Segrate	28/03/11	0.685	0.1739	891±115 (3.51±0.45)	^b 122±89 (0.48±0.35)	< 58 ^a (<0.23)
Senago	28/03/11	0.500	0.1739	725±133 (2.08±0.38)	<11 ^a (<0.03)	< 86 ^a (<0.25)
Segrate	12/04/11	0.016	0.5217	<36 ^a (<0.011)	859±435 (0.271±0.137)	<308 ^a (<0.097)
Segrate	15/04/11	0.925	0.5217	291±87 (0.52±0.15)	45±32 (0.08±.0.06)	57±26 (0.10±.0.05)
^a MDA ^b Critical Level						

¹³¹I < 1Bq L⁻¹

The Food and Drug Administration (FDA) fixed intervention level for 131 I in drinking water and infant milk, to 170 Bq L⁻¹ while in Japan, the 131 I limit for consumption of tap water is 100 Bq L⁻¹ for infants, and 300 Bq L⁻¹ for adults (RIKEN, 2011).

¹³¹I, ¹³⁷Cs and ¹³⁴Cs in snow

Samples collected at 3000 m s.l.m. Monte Moro - Macugnaga, Italy

Data of	Fallout isotopes in snowfall samples					
Sampling	131 I	¹³⁷ Cs	134 Cs	ratio		
Samphing	$mBq L^{-1}$	mBq L ⁻¹	$mBq L^{-1}$	$^{134}Cs/^{137}Cs$		
28/03/11	< 12.04 ^a	$< 8.98^{a}$	$< 6.92^{a}$			
31/03/11	$< 20.88^{a}$	27±16	^b 32 ±13	1.19		
14/04/11	277±180	68±31	67±30	0.98		
23/04/11	^b 60±53	56±33	$< 29^{a}$			

IAEA CN-235, Vienna Austria

¹³¹**I**, ¹³⁷**Cs** and ¹³⁴**Cs** in grass

Data of	Fallout isotopes in grass samples				
Sampling	¹³¹ I	¹³⁷ Cs	134 Cs	ratio	
Samping	mBq kg ⁻¹	mBq kg ⁻¹	mBq kg ⁻¹	$^{134}Cs/^{137}Cs$	
30/03/11	66±24	47±19	<18 ^a	-	
06/04/11	^b 37±33	60±20	^b 21±17	0.3	
13/04/11	<51 ^a	^b 41±35	<30 ^a	-	
20/04/11	^b 135±119	89±32	<21 ^a	_	

Total surface: 1 m²

Total mass: 0,35-0.45 kg

¹³¹I, ¹³⁷Cs and ¹³⁴Cs in soil

		Fallout isotopes in soil samples				
Site	Date of Sampling	¹³¹ I	¹³⁷ Cs	134 Cs	ratio	
	Samping	Bq kg ⁻¹	Bq kg ⁻¹	Bq kg ⁻¹	$^{137}Cs/^{134}Cs$	
Segrate	30/03/11	0.63±0.29	12.26±0.70	0.83±0.30	0.07	
Senago uncovered	04/04/11	0.57±0.25	85.17±4.40	0.29±0.13	0.0034	
Senago covered	04/04/11	<0.15 ^a	84.65±4.40	0.47 ± 0.28	0.01	
Segrate ^b	06/04/11	0.85 ± 0.34	18.73 ± 1.02	^c 0.48±0.27	0.03	
Segrate	13/04/11	0.95 ± 0.60	18.65 ± 1.04	$< 0.21^{a}$	-	
Segrate	20/04/11	1.99 ± 1.32	19.08 ± 1.05	< 0.19 ^a		
Segrate	04/05/11	$< 0.24^{a}$	9.62±0.56	0.45±0.19	0.05	
Segrate	11/05/11	$< 0.21^{a}$	11.99±0.63	< 0.06		
Segrate	18/05/11	$< 0.48^{a}$	24.95±1.30	< 0.07		

^a MDA

^b Sample taken in an unplowed area ^c Critical Level

¹³¹I, ¹³⁷Cs and ¹³⁴Cs in milk

Samples of sheeps and cows milk collected in Val Anzasca (VB), Italy at 400 m s.l.m.

¹³¹**I**, ¹³⁷**Cs** and ¹³⁴**Cs** in milk

Fallout isotopes in milk samples								
	Goat Milk			Cow Milk				
Date of Sampling	131 I	¹³⁷ Cs	¹³⁴ Cs	Ratio	¹³¹ I	¹³⁷ Cs	¹³⁴ Cs	Ratio
Samping	mBq L ⁻¹	mBq L ⁻¹	mBq L ⁻¹	$^{134}Cs/^{137}Cs$	mBq L ⁻¹	mBq L ⁻¹	$mBq L^{-1}$	$^{134}Cs/^{137}Cs$
9/04/11	246±107	481±52	< 33 ^a	-	208 ± 97	333±44	< 31 ^a	
1/05/11	101±68	506±48	$< 26^{a}$		^b 68±67	421±44	< 31 ^a	
8/05/11	87±72	448±47	< 26 ^a		$< 40^{a}$	263±39	< 26 ^a	
16/05/11	$< 24^{a}$	526 ± 50	< 30 ^a		< 38 ^a	302±47	67±35	0.22
21/05/11	^b 77±73	527±63	^b 59±44	0.11	< 53 ^a	684±54	$< 28^{a}$	
29/05/11	60 ± 46	474±47	69 ± 26	0.15	110±58	473±44	$< 27^{a}$	
05/06/11	< 25 ^a	398±44	< 33 ^a		< 34	354±41	$< 27^{a}$	
11/06/11	< 68 ^a	378±55	< 34 ^a		77±68	279±37	41±24	0.15
20/06/11	< 32 ^a	298±37	$< 22^{a}$		$< 28^{a}$	197 ±35	$< 22^{a}$	
26/06/11	$< 29^{a}$	460±45	< 25 ^a		81±60	283±64	< 34 ^a	
03/07/11	< 28	796±67	^b 48±30		$< 32^{(A)}$	296±36	< 0.23	
		0					a. M	IDA
	4041	Greed					0. C	filical level
	131	1200 ± 3	350 mBc	ן L ⁻¹				
	¹³⁷ Cs	150:	±30 mBc	1 L ⁻¹				

IAEA CN-235, Vienna Austria

Dose assessment

The limit of the effective dose for the population is fixed for the Italian Low of Radioprotection in 1 mSv y⁻¹ (Italian Government Legislative Decree, 1995).

The evaluation of the effective dose is done by the relation:

$$E = E_{est} + \sum_{j} h(g)_{j,ing} J_{j,ing} + \sum_{j} h(g)_{j,inh} J_{j,inh} < 1 \text{ mSv } a^{-1}$$

where, E_{est} is the effective dose for exposure; Jj,_{ing} and Jj,_{inh} are the intake activity (Bq) by ingestion and by inhalation of radionuclide j, respectively;

 $h(g)_{j, ing}$, $h(g)_{j, inh}$ (Sv Bq⁻¹) are the coefficients of committed dose for unit of intake by ingestion and/or by inhalation for the population of age group g, due to radionuclide j.

Dose assessment

Coefficients of committed dose for unit of intake by ingestion and/or by inhalation for the population of age group g, for the radionuclides of interest, per unit of intake – Sv Bq⁻¹

Nuclide	age < 1 a $h(g)_{ing}$	age > 17 a h(g) _{ing}	$age < 1 \; a^{(*)} \ { m h(g)} \;_{inh}$	$age > 17 a^{(*)}$ h(g) _{inh}
I-131	1,8 10 ⁻⁷	2,2 10 ⁻⁸	7,2 10 ⁻⁸	7,4 10 ⁻⁹
Cs-137	$2,1 \ 10^{-8}$	1,3 10 ⁻⁸	8,8 10 ⁻⁹	4,6 10 ⁻⁹
Cs-134	2,6 10 ⁻⁸	1,9 10 ⁻⁸	1,1 10 ⁻⁸	6,6 10 ⁻⁹
			(*) ד	

^(*) Fast Type of Absorption

Annual individual usage factors for external exposure, inhalation and consumption of foods. reported in NCRP-123 publication

Pathways - External and Inhalation	Unit	Exposure
Inhalation	$m^3 a^{-1}$	8 000
Pathways - Ingestion	Unit	Intake
Water and beverages	$L a^{-1}$	800
Milk	$L a^{-1}$	300

Dose assessment

The evaluation of the Effective Dose was done using the highest concentration value for ^{131}I , ^{134}Cs and ^{137}Cs measured (Tables 1, 2, 7), and are taken into account only the h(g) coefficients for population of age less than 1 year old and greater than 17 a.

Effective doses due to different pathways

< 1mSv y⁻¹

IAEA CN-235, Vienna Austria

Fukushima Nuclear Accident

Point 5: Transition from Emergency to Existing Exposure Situation

IAEA CN-235, Vienna Austria

Fukushima Nuclear Accident

Nuclear Weapons Tests		Reprocessing	Chernobyl	Fukushima
(atr	n+ocean)	(ocean)	(atm+ocean)	(atm+ocean)
3H 1	86 000	1000	10	?
14C	213	10	?	?
¹³¹ I			1760	(130-160)+5
¹³⁷ Cs	950+600	50	85+16	(13-15)+(3-6) direct
				5-10 deposition
⁹⁰ Sr	620+380	7	~20	0.14+(1-2)
^{239,249} Pu	10	1	~1	?

Povinec, Hirose, Aoyama: Fukushima Accident: Environmental Impact, Elsevier, 2013, 400p

2

CONCLUSIONS

- The Fukushima plume was detected in Milan, Italy and Thessaloniki, Greece
- > HYSPLIT backward trajectories interpreted the measured atmospheric concentrations
- The relative high concentrations of ¹³⁷Cs in grass, soil and fresh milk samples, correspond to Chernobyl fallout
- ¹³¹I and ^{137,134}Cs isotopes were found above their detection limits in all environmental samples but very far below levels of concern