IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

Enhancing the Emergency Preparedness and Response Expertise with the Use of Advanced Response and Assistance Network Capabilities

O. Isnard IRSN Radiation Protection Division – Emergency Emergency Response Department

RANET: Response and Assistance Network

RANET is an operational tool under the Assistance Convention which aims at facilitate:

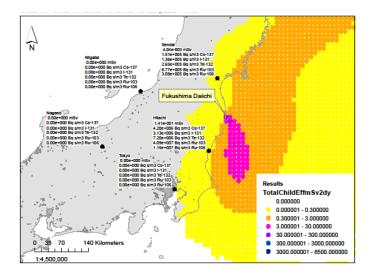
- The provision of requested international assistance
- The harmonization of emergency assistance capabilities and,
- The relevant exchange of information and feedback of experience

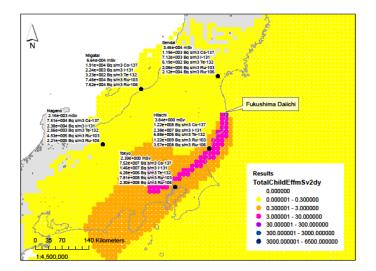
IAEA Action plan on Nuclear Safety which gives a new mandate to the Agency regarding the provision of information to MS and the general public during a nuclear emergency on its potential consequences, including available information and prognosis of possible scenarios...

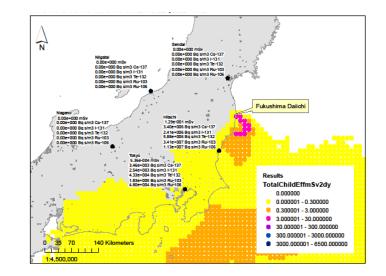
RANET: Response and Assistance Network

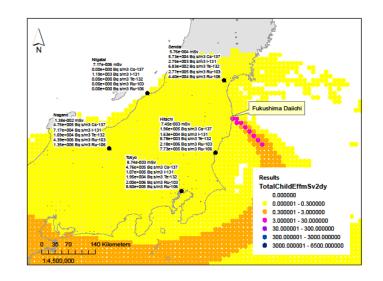
- 8 functional areas including:
 - Radiological Assessment and Advice
 - Atmospheric Dispersion
 - Dose prediction...
 - Nuclear Installation Assessment and Advice
 - Nuclear Power Reactor Accident Analysis
 - Spent Fuel Storage Assessment and Advice...

The IEC (Incident and Emergency Centre) aims at developing an Assessment and Prognosis process to fulfill the new mandate


An accident somewhere is an accident everywhere


During the response to the Fukushima emergency (all) MS with expertise capabilities where providing analysis and anticipation scenarios to their strategic/decision level.


- Using pre-calculated source terms (unit, scenario based, real-world accident)
- Using live calculated source terms from analysed data from TEPCO public data available (diagnostic and prognostic)
- Using their National Meteorological Services for weather forecasts at different scale
- Using their national response system (models) for atmospheric transport and for dose assessments



UK (PHE, RIMNET & Met. Off.)

Russia (IBRAE)

ТЕХНИЧЕСКИЙ КРИЗИСНЫЙ ЦЕНТР

ИНСТИТУТ ПРОБЛЕМ БЕЗОПАСНОГО РАЗВИТИЯ АТОМНОЙ ЭНЕРГЕТИКИ

Оперативному дежурному СКЦ Росатома Срочно для Генерального директора Госкорпорации «Росатом» Кириенко С.В. Копию – заместителю генерального директора Госкорпорации «Росатом» Локшину А.М. Копию – директору Департамента коммуникаций Госкорпорадии «Росатом» Новикову С.Г. 11 ВКА № 9

12/03/11 CIIPABKA №9 19:30

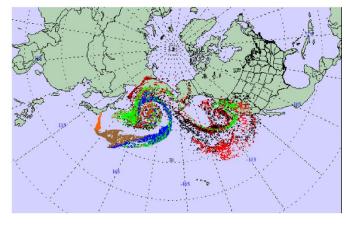
ДЛЯ ИНФОРМАЦИИ! СРОЧНО!

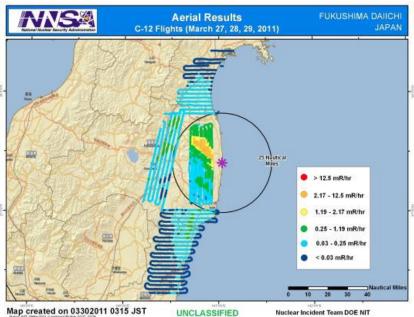

Расчетный анализ консервативного по сценарию протекания аварии на АЭС с максимальными значениями (мадореалистичными) возможного выброса с неблагоприятными метеоусловиями с направлением переноса облака к герритории Российской Федерации (расчетная точка – <u>г. Владивосток</u>) выполненной в ИБРАЭ РАН, показывает, что прогнозируемые дозы облучения даже в случае выпадения осадков над территорией <u>г. Владивостока</u> значительно меньше значений, представляющих сколь-либо значимый ущерб здоровью и не требуют каких-либо мер вмешательства.

Максимальная аварийная доза при абсолютно нереалистичных предположениях возможной величины выброса будет составлять 10 мЗв за год. Мощность дозы при этом кратковременно может возрастать до 20-30 фоновых значений, т.е. 2-3 мвЗв/ч (200 – 300 мв.Р/ч).

С помощью модуля БОНУС 2.1 в составе кода СОКРАТ проведены предварительные оценки накопления нуклидов во время нормальной эксплуатации АЭС Fukushima <u>Daiici</u> (блок № 1).

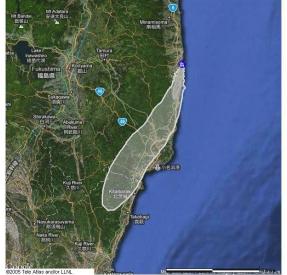
В таблице 1 приведены параметры активной зоны <u>реактора</u> при которых проводились расчеты. The worst (unlikely) weather conditions have been chosen for calculation:


Wind speed – 10 m/s, Wind direction - 115 degrees, Stability category – E, Local precipitations in the Vladivostok area at the rate of 10 mm/h.



Total annual effective dose (children of 1-2 years) within 10 mSv

Some selected expertise responses to the Fukushima emergency


USA (US-NRC & US-DOE: NARAC)

Nuclear Incident Team DOE NIT Contact (202) 586 - 8100

1hr-Avg Air Conc at 03/22/2011 03:00:00 UTC

Some selected expertise responses to the Fukushima emergency

22 mars 2011

Te-132

Te-127m

Te-131

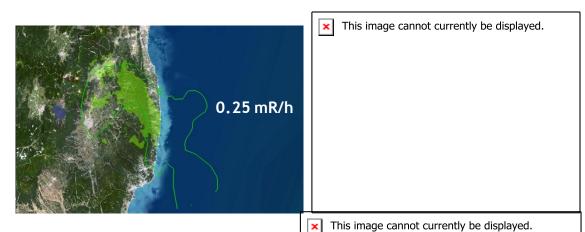
Te-131m Te-133

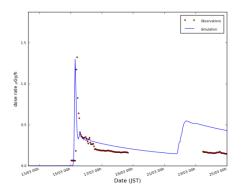
Br-83 Br-84 6 E+16

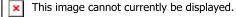
1 E+15

5 E+14 2 E+15

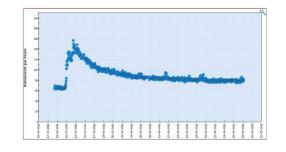
7 E+09 2 E+12


7 E+07


L'IRSN publie une évaluation de la radioactivité rejetée par la centrale de Fukushima Daiichi (Fukushima I) jusqu'au 22 mars 2011


Annexe

Composition détaillée du rejet utilisé pour estimer les niveaux de contamination de l'air


Isotope	Cumul (Bq)	Isotope	Cumul (Bq)	Isotope	Cumul (Bg)	Isotope	Cumul (Bq)
Kr-85	2 E+16	I-131	9 E+16	Cs-134	1 E+16	Rb-88	5 E+13
Kr-85m	1 E+14	I-132	7 E+16	Cs-136	6 E+15	Rb-89	3 E+02
Kr-87	7 E+11	I-133	2 E+16	Cs-137	1 E+16	Te-133m	4 E+10
Kr-88	5 E+13	I-134	4 E+11	Cs-138	3 E+09	Te-134	6 E+09
Xe-133	2 E+18	I-135	2 E+15	Cs-134m	1 E+12	Sb-130	1 E-15
Xe-133m	2 E+16	I-129	2 E+09]		Sb-125	6 E+14
Xe-135	2 E+16	I-132m	2 E+10]		Sb-127	4 E+15
Xe-138	9 E+01	I-128	4 E+04			Sb-128	1 E+10
Kr-83m	1 E+13	I-130	5 E+13			Te-127	5 E+15
Xe-131m	2 E+16					Sb-128m	1 E+13
Xe-135m	6 E+14	1				Sb-129	4 E+13
						Te-129m	7 E+15
						Sb-131	8 E+05
						Te-125m	1 E+14

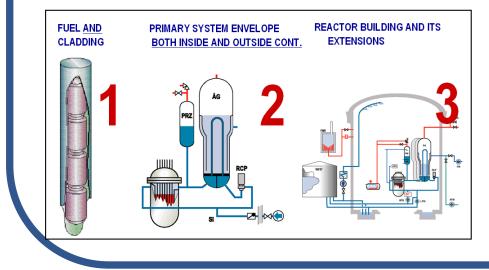
Most (if not all) of these expertise were done without any exchange Mainly because objectives were different

- Protection of national residents living in Japan (Tokyo)
- Planning of ground (or airborne) missions (rescues, monitoring...)
- Planning and response to plume arrival (monitoring) on MS territory
- Domestic public communication including evaluation of health impact on MS territory
- None (almost) where devoted to look at the protection of local population around the Fukushima plant

Data needed to provide expertise (for domestic use and as a RANET asset) shall be organized and distributed trough a centralized system

The Fukushima accident showed that at some point, the accident state must provide raw data of the on-going accident (installation, environment) to let expertise assets throughout the world use them for their own analysis (needed by MS to take strategic decisions)

- Avoid too much transfer is of paramount importance to minimize effort from the accident state and to insure consistency of distributed data
- Accident related data
 - Dynamic data from the impacted nuclear installation
 - Environmental monitoring data on and off-site
- Meteorological data
 - Forecasts at different temporal resolution and spatial scales
 - Observation and Nowcast products



What for?

Enhancing the understanding of the situation is done trough the use of a structured methodology providing a regular diagnostic of the state of the accident installation.

Anticipation on possible scenarios and development of the accident shall also be done with the help of a structured methodology

The IRSN methodology (3D/3P) structure the work of expertise resources, facilitate the dialogue and the exchange of information between expertise teams and **does not require numerous data to work**!

FRANCE	NPP SITE GRAVELINES	NPP UNIT	COORDINATES	LONG/LAT REACTOR Generic F		TIME GMT TIME				
STATUS at 15 h 54		DIAGNOSIS			PROGNOSIS					
Barriers Status	Safety functions		ems used for the oring of functions	Forecast availability of systems	Forecast status of safety functions	Forecast Status of Barriers				
Fuel Matrix and Claddi No cladding Failure	- low		ion: SI, chemical &	 confortable low 	control rods boration: SI, chemical 4	Fuel Matrix and Claddings				
Cladding Failure Core Melt	 doubtful satisfactory degraded dewatering 	+ SI, c	trl sys, makeup, FBA hemical & vol. ctrl r reserves (RW ST, up)	doubtful satisfactory degraded dewatering	vol. ctrl sys, makeup, FBA - SI, chemical & vol. ctrl - water reserves (RWST, makeup)	Cladding Failure at h Core Melt at h Primary System Integral Doubtful Primary break P2P relations opened at h Outaide containment SGTR				
Primary System Integral Doubtful Primary break inside reactor building P2R relief lines outside containment SGTR	doubtful . controlled or 1 . adequate or n . doubtful	+ SG + bred - SI + feed - Decc - Syste - Comp	k and bleed ty heat and Removal im ionent Cooling sys, rital Service Water	doubtful controlled or not adequate or not doubtful	SG break SI freed and bleed becay heat and Removal system Component Cooling sys, Essential Service Water system					
Reactor Building and its Extension Normal Leakage Doubtful Uncollected leakage in Prenetations IRWST secondary system Collected leakage RB penetration Connected system BB depressurgation	safe safe outguarent doubtful	eed pho + con	tainment isolation ses 1 and 2 tainment spray tem in service	 safe not guaranteed doubtful 	 containment isolation phases 1 and 2 containment spray system in service 	Beactor Building and its Extension Normal leakage □ Doubt/ul □ Uncollected leakage □ □ peretations □ □ RB prestations □ □ RB prestations □ □ RB prestation □ □ RB prestation □ □ RB prestation □ □ RB prestation □				

Example of simple data exchange between the operator and IRSN Technical Emergency Centre

- Need to establish at the preparedness phase the data to be exchanged
- Automatic data transmission is preferable
 - Allow to run expertise in parallel
 - Does not require extra resources from the operator

Division Production Nucléaire	ORGANISATION DE CRISE PLAN D'URGENCE INTERNE CHAPITRE A 2.2							01	07/07		
C.N.P.E. de PENESH-IRSE POSTE DE COMMANDEMENT LOCAL (PCL) D 5039 - OL						C/A2.2					
Strassage nº 26))								Fo	olio 2/2	
- messes	9	MF	SSAC	E QU	ART	D'HE	URE		2		
Centre Tachnique de	ET			NCHE :							
									leure du relevé :	14.0.0	
Site: PENLY		che :	3		Date :	2310	101				
neodologi i ora		mell 1				teur PC	_	Nom &	の可任L Visa: c	R	
Destinataires : PCC,	PCM, ETC-	N, CTO	C-IRSN,	SEPTEN	I, FRAM	ATOME					
* Entourer la mention u	tile "Uni	té à pri	éciser su	ivant l'éd	chelle de	e l'enreg	istreu	ur			
							1	; Tendar	nce du paramètre :	773	
PARAME	TRES		GV 1	GV2	GV3	GV4	T	CAPTE	1000 CE 11 • CONT		
Niveau GV Gamme La		%	100	100	You		INC. PA		8 à 408 MN	POB,PO	
Isolement GV côté eau	1		TOTS	ouision	BUI-	cuiation	1	TPL		PCS,POS	
Isolement GV côté vap	beur			ouiding	oui-	ouknon		TPL		POE, POS	
Débit ASG		/m³/ h	27	20	0	30	-27	ASG 102 à ASG 101 à	402 MD (Gamme étroits) 401 MD (Gamma large)	P08,P06	
Niveau báche ASG		m ³		12	50		1	ASG 01	ou 02 MN	Pos	
Débit APG		t/h		9	0			APG 05		P10 P08	
Pression GV		bar	112	16	18	12	20		à 405 MP	P08	
Activité purges GV		Ba/ m ³	E	megy	men	HONS	Farst	KRT 11,	12, 13, 14 MA		
Activité vapeur GV	e15 "	1		~~	· A	~	3	KRT 15,	16, 17, 18 MA	P21	
Pompes primaires en s		「「「「」	oul-had	aui-fact	oul-ken	oui-non		Ampèrer	mètre .		
Température branche f		°C	1.5	7.	7	3		RCP 10	4 à 404 MT	P03	
Température branche o		°c	ALS	2	7	145) à 400 MT	POB	
Niveau cuve		%		81				Ebulliom		P05	
Température sortie coeur	max (TRIC)	°C ^3			00				bulliomètre		
Marge à la saturation coe	UF (ATSAT)	°c	°c + 5			54		Ebulliomètre		P06	
Marge à la saturation cou	vercle (ATSAT)	°C					Ebulliomètre			Pos	
Pression primaire		bar						P08			
Flux niveau intermédiai		A		1.0			_		23, 33, ou 43 MA	TG4	
Débit ISMP (voie A et v		m ⁻ /n	BF+BC Gul	-	8F+8C 6030			RIS 47 e	t 48 MD	T04	
Débit ISBP (voie A et v	oie B)	m³/h	81+8C 84.8	0	046 BE	0		RIS 27 e	ou 48 MD	PD4	
Débit de charge		m³/h		0				RCV 28		P04	
Débit de décharge		m³/h 0						RCP 12, 13, 17 ou 18 MN		Pos	
Niveau pressuriseur		%		200	2				13. 14 ou 15 MN	T04	
Niveau bache PTR						- 17				705	
Débit aspersion encein	te	m³/h	Voie A		Voie I	9: Ye			MD / EAS 02 MD_ ou 004 MP	TOS	
Pression enceinte		bar rel.		214					MT ou 006 MT	TOS	
Température enceinte		°c		85	.0				ou 43 MA	TOS	
Débit de dose Gamma		mGy/h	unia A · M	Aav1 (0) 22	- voie B	· Mar190		RIS 11 et		TO3	
Seuils niveau puisard F	(10 <u>B</u>		Void A. I						0 ou 165 MD	P01	
Débit à la cheminée		m³/h			000	0			ou 84 MA	P01	
Activité ß gaz normale ch		Bq/m ³		10					ou 89 MA	POT	
Activité ß gaz accident ch	Cinaneo	MBq/m ³		107							
Procédure incidentelle							_			SMP	
Actions en cours, événe isolement de l'enceinte,	ements et ac niveau bas	PTR, .	urvenus):	(par exe groidi	mple : a	ent a	e des S 6	soupape ' C / K	s du pressuriseur,		
							-		voie A ->		

Most of the advanced centers which provide nationally expertise on radiological consequences during response are not meteorological services, they are able to run operational models which evaluate the atmospheric dispersion processes and the various doses for the public and consequences for the environment.

Their arrangements with national meteorological services make available weather forecasts to them to be in a position to do Radiological Assessment

Providing assistance as a RANET asset require to have access to "best" weather forecast products possible in the impacted area but also world-wide.

WMO shall organize RMSCs to provide such meteorological products to IAEA which will then broadcast them to RANET assets in charge of Radiological Assessment and Advice.

Contribution from different organizations to the Assessment and Prognosis process will enhance the global capabilities to be in a position to understand a developing situation and resulting possible consequences

The provision of several Assessment and Advice to the IAEA/IEC during a response will enable the IEC to combine results to produced concerted messages with the Accident State.

In doing so, the IEC will stay at a strategic level providing to MS a global overview of the situation and possible developments, enabling requesting MS to plan and to implement adequate responses to the situation

The Assessment and Prognosis process is achievable if potential Accident State commit to provide the necessary technical data (dynamic measurements in the installation) and if WMO and IAEA put in place an mechanism for RANET assets to get access to meteorological forecast products

- Extension of existing expertise methodologies to all type reactors
- Improve reference codes for Severe Accident (source term model), including the improvement of lodine behaviour models
- Provision of operational ensemble forecasts
- Improve wind direction forecast at small scale and 'Nowcast' products (including rain radar)
- Improve multi-scale atmospheric dispersion models (including deposition) and chemistry models for iodine in the atmosphere
- Improve of Data Assimilation methodology on environmental measurements (retrieve of source terms)

