Applying PSA for CAP1400 and Additional R&D after the Fukushima Accident

IEM-8

WENHUI Zhan

上海核工程研究设计院

Shanghai Nuclear Engineering Research and Design Institute

目录 (Content)

福岛后的中国核电

Nuclear Power Development Strategy after Fukushima Accident

SNERDI简介

Overview of SNERDI

CAP1400 PSA概述

Brief introduction of CAP1400 PSA

福岛后的中国核电发展

Nuclear Power Development Strategy after
Fukushima Accident

Nuclear Power Plant in the World

Nuclear Development Plan

2012年,国务院常务会议相继通过国家《核安全规划》和《核电中长期发展规划》等四个文件,明确了国家顶层规划:

On Oct.24,2012, Chinese government issued a "Mid to long term nuclear development plan(2011-2020)", decided national overall planning.

● 坚持 "在安全的基础上高效发展核电" ;

Safely And Effectively Develop Nuclear Power.

● 采用最严格的安全标准,最先进的技术;

The Most Strictest Safety Standard, The Most Advanced Technology.

● 新建核电项目技术路线以AP1000及其再创新为主;

GIII AP1000 technology and its successive re-innovation technology as future trends of nuclear power.

Nuclear Safety Planning

 In Oct. 2012, the State Council approved Nuclear Safety Planning.

核安全发展规划

Nuclear Safety Planning

NNSA

2012.10

The high level safety goals for the Twelfth Five-Year (2010-2015) is described as follows: severe accident prevention and mitigation measures should be considered thoroughly in the design, and core damage frequency and large release frequency should be assessed to be lower than 1E-5/reactor-year, 1E-6/reactor-year respectively.

As for the NPPs which will be built in China's

Thirteenth Five-Year (2016-2020) and later, the high level safety goal is described as "the possibility of the large radioactive release should be practically eliminated by design"

Safety Enhancement after accident

福岛事故后的安全裕度提高措施 Safety Enhancement after Fukushima Accident

- 防水封堵预案 Water proof plugging scheme (backup)
- 72小时后补水保障措施 Water supply after 72 hours
- 72小时后电源保障措施(增设移动式柴油发电机) Power supply after 72 hours (moveable diesel generator)
- 增强乏燃料池水位监测仪 Enhance spent fuel pool level monitor instrument
 - 环境监测设计改进 Environment monitoring design improvement
 - 强化应急指挥中心设计 Improve emergency command center design
 - 全范围SAMG Full scope SAMG

Technical insight of practical elimination 国家核电 上海核工程研究设计院 SNPTC SMARGHAI NUCLEAR EMBRICATION DESIGN HASTITUTE

- From technical point of view, the activities are related to the following areas
 - ✓ Earthquake
 - √ Flooding
 - ✓ Improvement of power and water supply
 - √ Spent fuel pool
 - √ Hydrogen control
 - ✓ Severe accident management
 - √ Filtered venting
 - **✓ PSA**
 - ✓ others

- seismic PSA (2013-2017)
- Risk from spent fuel pool (2013-2015)
- Level 2 PSA for shutdown condition (2013-2015)

上海核工院简介

Overview of Shanghai Nuclear Engineering Research and Design Institute (SNERDI)

- Shanghai Nuclear Engineering Research and Design Institute (SNERDI), located in Xuhui district, Shanghai, east China, was established on Feb. 8th, 1970. --- @ 728

SNERDI has become a subsidiary of the State Nuclear Power Technology Corporation (SNPTC) since June 2007.

Position of SNPTC

1. 代表国家对外签约,受让第三代先进核电技术

On behalf of Chinese government, to introduce advanced 3rd generation nuclear power technology;

2. 是通过消化、吸收、再创新形成中国核电技术品牌的主体;

To develop China's own brand name nuclear power technology through assimilation, absorption and innovation;

3. 是实现第三代核电技术引进、工程建设和自主化发展的主要载体和研发平台。

SPNTC is a key entity and platform for 3rd generation nuclear power technology introduction, project construction and self-reliance development.

SNERDI是中国3家核电设计院之一,具备完整的核岛设计能力。 SNERDI is <u>one of the three</u> research and design institutes on nuclear power plant in China.

- Class A qualification of engineering design
- 2. Class A qualification of **engineering consulting**
- 3. Class A qualification of **project supervising**
- 4. Class A qualification of radioactive protection evaluation
- 5. Class A qualification of environment impact evaluation
- 6. Qualification of **nuclear pressure retaining component design** (issued by NNSA)
- 7. Class 1, Class 2, and Class 3 qualification of pressurized vessel design
- 8. Class A qualification of architectural decoration design.
- 9. In total, 16 Class A, 5 Class B certificates and/or qualifications.

- ▶中国大陆第一座商用核电厂— 秦山核电厂的设计。 The 1st NPP in mainland of China, Design of Qinshan 300MWe NPP with 2 loops PWR.
- ▶中国第一个出口核电站—巴基斯坦恰希玛核电站的设计。
 Design of Pakistan Chashma NPP
 Unit 1.
- ▶中国进口CANDU-6重水反应堆的技术总支持。 Technical support to Chinese imported CANDU-6 HWR.

Engineering ongoing:

- Overall Design of AP1000 Self-Reliance project for Sanmen and Haiyang
- AP1000 technology transferring (TT), Digestion and Absorption
- ➤ The Standardization Design of CAP1000
- The large passive PWR, CAP1400
- The development of SMR & CAP Series
- Design for Chashma NPP-3/4

Introduction of SNERDI's PSA

CAP1400 PSA 概述 Large Advanced PWR Project PSA

Demonstration Project

Key milestones of CAP1400 demonstration plant:

Main Technical Features

Main Technical Indicators	CAP1400	Nuclear Power Unit Compared	
Heat (electric) power	4040MWt(1500MWe)	3983MWt(1400MWe)	
Power plant availability	>93%	>90%	
Designed lifetime	60 yrs	60 yrs	
Refueling cycle	18~24 months	18 months	
Construction period	48 months	52 months	
Safety features	passive	active	
Thermal margin (DNBR)	>15%	>10%	
Core damage probability	<10 ⁻⁶ /year	<10 ⁻⁵ /year	
Large-scale radioactive release probability	<10 ⁻⁷ /year	<10 ⁻⁶ /year	
Operator response time	72 hours of non-intervention	>30 min	
Value Ratio Investment	Lower than others		

CAP1400 PSA results

CAP1400 PSA Scope

At power & LPSD Events PSA release from the core exclude the SFP

CAP1400 PSA External events

 The following external events (groups) are typically further analyzed after screening analysis:

- > Internal fire
- > Internal flooding
- ➤ Seismic events——SMA
- ➤ High winds
- External flooding
- > Transportation and nearby facility accidents, etc.

CAP1400 PSA -Framework

Framework of analysis process and elements of internal event PSA under at-power condition NUCLEAR POWER TECHNOLOGY CORP.

Regulations and Standards

- The Chinese Nuclear Safety Regulations and Standards:
 - 1) HAF102, 核动力厂设计安全规定,2004.4. (Safety of Nuclear Power Plants: Design)
 - 2) HAD102/01,核电厂设计总的安全原则,1989.7

(Fundamental Safety Principles in Design of NPP)

- 3) HAD102/17,核动力厂安全评价与验证,2006.6
- (Safety Assessment and Verification for Nuclear Power Plants)
- 4) NB/T 20037.1-2011 应用于核电厂的概率安全评价第1部分:功率运行内部事件一级 PSA (Probabilistic Safety Assessment with application for NPPs Part 1: Internal events atpower level 1 PSA)
- 5) NB/T 20037.2-2012 应用于核电厂的概率安全评价 第2部分: 低功率和停堆工况内部事件一级PSA (Probabilistic Safety Assessment with application for NPPs Part 2: Low power & shutdown level 1 PSA)
- 6) NB/T 20037.3-2012 应用于核电厂的概率安全评价 第3部分:水淹 (Probabilistic Safety Assessment with application for NPPs Part 3: Flooding)
- 7) NB/T 20037.4-2013 应用于核电厂的概率安全评价 第4部分: 火灾 (Probabilistic Safety Assessment with application for NPPs Part 4: Fire)

Regulations and Standards

- <u>IAEA</u> Nuclear Safety Regulations and Standards:
 - 1) IAEA SSG-3, Development and Application of Level 1 Probabilistic Safety Assessment for Nuclear Power Plants, Specific Safety Guide.
 - 2) IAEA SSG-4, Development and Application of Level 2 Probabilistic Safety Assessment for Nuclear Power Plants, Specific Safety Guide.
 - 3) IAEA NS-G-1.5 External events excluding earthquakes in the design of nuclear power plants.
 - 4) IAEA NS-G-2.15 Severe Accident Management Programmes for Nuclear Power Plants.

Regulations and Standards

American Nuclear Safety Regulations and Standards :

- 1) Code of Federal Regulations 10 CFR 50, May 2010.
- 2) Regulatory Guide **(RG) 1.200** An Approach for Determining the Technical Adequacy of Probabilistic Risk Assessment Results for Risk-Informed Activities.
- 3) RG 1.206 Combined License Applications for Nuclear Power Plants (LWR)
- 4) **NUREG-0800**, Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants, 2007.
- 5) American Society of Mechanical Engineers (ASME)/American Nuclear Society (ANS) RA--Sa-2009, Addenda to **ASME/ANS RA-S**–2008, Standard for Level 1/Large Early Release Frequency Probabilistic Risk Assessment for Nuclear Power Plant Applications.
- 6) **NFPA 804** Standard for Fire Protection for Advanced Light Water Reactor Electric Generating Plants.

CDF for internal events

CAP1400 at power internal events- Contribution Of Initiating
Events To Core Damage

LRF for internal events

CAP1400 at power internal events- Contribution Of Initiating
Events To Large Release

Source Term and Consequence

Site Boundary Whole Body Dose, 24h

LPSD PSA results

• LPSD PSA result analysis:

• Source: CAP1400 AP1000 AP600

• LPSD CDF: 5.12E-08/y 1.23E-7/y 1.0E-7/y

The result indicates:

- ◆ The risk of CAP1400 under LPSD condition is very Low;
- ◆ The LPSD CDF equals approximately a quarter of the at power internal events' CDF, and could not be ignored.

Summary of CAP1400 PSA Results

	Core Damage Frequency (CDF) (per year)		Large Release Frequency (LRF) (per year)	
Events	At-Power	Shutdown	At-Power	Shutdown
Internal Events	1.90E-07	5.12E-08	1.53E-08	8.54E-09
Internal Flood	4.43E-10	1.35E-09	1.44E-10	2.25E-10
Internal Fire	8.67E-08	7.08E-08	1.47E-08	1.18E-08
High Wind	2.03E-09		1.33E-09	
Sum	2.79E-07	1.23E-07	3.15E-08	2.06E-08
Total	4.02E-07		5.21E-08	
HAD Safety goal	1E-05		1E-06	
NRC Safety goal	1E-04		1E-06	
URD Safety goal	1E-05		state nuclear power tec $1E-06$	

Risk from spent fuel pool (2013-2015)

Risk from spent fuel pool (2013-2015)

• seismic PSA (2013-2017)

Probabilistic Seismic Hazard Analysis (PSHA)

SSHAC+CPSHA

Fragility Analysis

- Conservative Deterministic Failure Margin (CDFM)+Hybrid
- Fragility Analysis/Generic data

System Analysis

SET + internal event PSA model

Quantification

- Monte Carlo
- Binary Decision Diagram

• seismic PSA (2013-2017)

PSHA results of Shidaowan site, China

Hazard Curves

UHRS (1×10⁻⁵ AFE)

• seismic PSA (2013-2017)

Preliminary Seismic CDF = 2.00E-08/y (mean)

FV Importance

ET/FT Analysis Engine

Algorithm

BDD: Binary Decision Diagram

ZBDD: Zero-suppressed Binary Decision Diagram

Accuracy

- Relative Error: $\pm 2\%$

Speed

Less than 2 mins for regular plant level model on PC

Capability

- Plant level PSA model solving with high efficiency
- Compatible with RiskSpectrum and CAFTA
- Can be Integrated into Risk Monitor software as a third party Engine

Performance comparison with RiskSpectrum (same environment)

Risk Monitor Development

Structure

AMP (Apache, MySQL, PHP), Browser /Server

Performance

- Integrated with BDD-based ET/FT Analysis Engine for a faster speed
- Capable of providing risk figure, importance indication, schedule risk curve,
 DID status, etc., necessary information for risk monitor and management
- High server load capacity and stability

Safety

- Strict user privilege management
- Malicious network attack defendable
- Data backup

User Experience

- Friendly and simple interface
- Interactive charts with supportive information

Risk Monitor Development

SNERDI PSA in future

Any collaboration for above-mentioned areas is necessary and encouraged

