The ROSA-SA Project on Containment Thermal Hydraulics

Taisuke YONOMOTO, Yasuteru SIBAMOTO, Masahiro ISHIGAKI and Satoshi ABE

Thermal-Hydraulic Safety Research Laboratory
Nuclear Safety Research Center
Japan Atomic Energy Agency

International Experts’ Meeting on Strengthening Research and Development Effectiveness in the Light of the Accident at the Fukushima Daiichi Nuclear Power Plant
At the IAEA Headquarters, Vienna, Austria
16 to 20 February 2015
Contents

- Background and objectives
- Current research activities
 - The CIGMA facility for integral testing
 - CFD analyses on
 - Erosion of density stratified layer by impinging jet
 - Condensation with non-condensables
- Summary
Background and Objectives

- The Fukushima Dai-Ichi NPS accident re-emphasized the importance of severe accident research in Japan.
- JAEA started the project on the containment thermal hydraulics related to:
 - Over-temperature Containment Damage
 - Hydrogen Risk
 - Aerosol Migration

The ROSA-SA(Severe Accident) project

- ROSA: Rig of Safety Assessment
- A series of ROSA projects have focused on T/H issues, e.g.,
 - ROSA-III for BWR LOCA, ROSA-IV for PWR Small Break LOCA, etc.
- Consists of integral tests, separate effects tests and analytical study for the LP and CFD codes

Objectives

- Obtain better physical understanding on the T/H phenomena
- Validate and improve analysis methods for the LP and CFD codes
Technical Issues 1/2

- Over-temperature Containment Failure
 - Interaction of high-temp. gas flow and structure

- Hydrogen Risk
 - Thermal hydraulics of hydrogen-mixed gases
 SETH, SETH2, HYMERES, ISP-47 (stratification not predicted), PANDA, MISTRA, THAI,

- Aerosol Transport
 - Pool scrubbing
 relation with two-phase flow behavior, etc.
 - Behavior in large space
 water condensation on aerosol particles, etc.

- Effects on above phenomena of T/H behavior:
 - natural circulation, density stratification, jet, plume, cooling (spray, fan cooler, outer surface), mixing, phase change, heat transfer, mass transfer, etc.
 - scaling laws between test and reactor conditions
Technical Issues 2/2

- Effectiveness of Accident Management (AM) Measures
 - Spray cooling, Fan cooler, Containment outer surface cooling
 - Containment vent, Nitrogen substitution
 - Performance outside the design conditions (e.g., low flow spray)

- Validation and improvement of prediction models
 - Lumped parameter (LP) codes such as MELCOR, RELAP5
 - CFD codes
 - To be used for technical support to the system analysis code being developed by Nuclear Regulation Authority (NRA), Japan

- Measurement technique
 - Detailed data for CFD model validation including distribution of gas molar fraction, velocity, turbulence, void fraction, etc.
Current Research Activities

1. Design of large-scale containment test facility CIGMA
2. CFD analysis on erosion of density stratified layer by impinging vertical jet
 - Turbulence model improvement for the RANS analysis based on the LES analysis
 - OECD/NEA PANDA benchmark test analysis
3. CFD analysis on steam condensation with noncondensables
1. Large-Scale Containment Test Facility

Integral Test Facility: CIGMA
- Containment InteGral Measurement Apparatus

Characteristics
- High design temperature & pressure
 - 573~773 K depending on pressure for boundary wall
 - Up to 973K for gas injection nozzle
 - Up to 1.5 MPa for pressure
- Instrumentation with high space resolution & CFD-grade
 - Temperature (fluid 380, wall 240)
 - Gas sampling for QMS (118)
 - Velocity measurement using LDV, PIV through large windows of 650mm dia.
- Testing on AM measures
 - Outer surface cooling
 - Vent, nitrogen substitution etc.

First test scheduled in 2015

QMS: Quadrupole Mass Spectrometer
LDV: Laser-Doppler Velocimetry
PIV: Particle Image Velocimetry

The CIGMA facility is developed under the auspices of the Nuclear Regulation Authority (NRA), Japan.
Planned Experiments at CIGMA

- Erosion of density stratification due to Helium/Steam jet
- Effects of outer surface cooling on stratification, natural circulation
- Wall temperature behavior responding to impingement of high temperature jet
- Effects of internal structure, etc.
Comparison with Existing Facilities

- High design temperature and pressure
- Instrumentation with high space resolution

<table>
<thead>
<tr>
<th>Organization</th>
<th>THAI(^4)</th>
<th>MISTRA(^3)</th>
<th>PANDA(^1,2)</th>
<th>CIGMA</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>m</td>
<td>9.2</td>
<td>7.3</td>
<td>25(total)</td>
<td>10</td>
</tr>
<tr>
<td>Diameter</td>
<td>m</td>
<td>3.2</td>
<td>4.25</td>
<td>4</td>
<td>2.5</td>
</tr>
<tr>
<td>Volume</td>
<td>m(^3)</td>
<td>60</td>
<td>100</td>
<td>183(^*)</td>
<td>(\sim50)</td>
</tr>
<tr>
<td>Pressure</td>
<td>MPa</td>
<td>1.4</td>
<td>0.6</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Temperature</td>
<td>K</td>
<td>453</td>
<td>473</td>
<td>473</td>
<td>573 (ave)(^*)</td>
</tr>
<tr>
<td>Power</td>
<td>MW</td>
<td>0.1</td>
<td>1.5</td>
<td>1.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Instrumentation</td>
<td></td>
<td>(\sim200)</td>
<td>(\sim370)</td>
<td>(\sim1000)</td>
<td>(\sim600)</td>
</tr>
<tr>
<td>Thermocouple</td>
<td></td>
<td>(>160)</td>
<td>(>300)</td>
<td>(\sim600)</td>
<td>(\sim100)</td>
</tr>
<tr>
<td>Concentration</td>
<td></td>
<td>(\sim20)</td>
<td>(\sim50)</td>
<td>(\sim100)</td>
<td>(\sim15)</td>
</tr>
<tr>
<td>Window</td>
<td></td>
<td>20</td>
<td>6</td>
<td>PIV</td>
<td>PIV/ LDV</td>
</tr>
<tr>
<td>Velocimetry</td>
<td></td>
<td>PIV/LDV</td>
<td>PIV/LDV</td>
<td>PIV/ LDV</td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. two vessel + interconnection pipe
2. 573~773 K for boundary wall depending on pressure, and up to 973K at gas injection nozzle

References

Comparison with previous experiment conditions

- Pressure & Temperature
 - OECD/SETH-2, for example,
 Investigate hydrogen stratification break-up induced by heat and mass sources or by the actuation of a system (e.g. spray, ...)
 - PANDA: $P < 2.6$ bar, $T < 130^\circ C$, $T_{inj} < 150^\circ C$
 - MISTRA: $P < 1.1$ bar, $T < 99^\circ C$, $T_{inj} < 148^\circ C$

- CIGMA tests will enlarge validation-range for models
 - Empirical correlations used in codes
 - Turbulent models, Similarity laws, etc.
 will be validated under enlarged T/H conditions
2. Erosion of density stratified layer by jet flow

- RANS turbulence model improvement
 - Analysis using OpenFOAM for a containment
 - Model improved to include effects of jet-stagnation and buoyant
 - Compared with LES analyses
 - Using fine meshing, LES is believed to be more accurate.

- Result
 - Erosion rates much larger for RANS than LES
 - Modified model agrees well with LES.

References in this page

PANDA Benchmark Test Analysis

- OECD/NEA & PSI sponsored benchmark test
- Vertical jet effects on density stratified layer using PANDA
- 19 organizations
 - Test in 2013
 - Presentation CFD4NRS-5, 2014
- Post-test analysis using the improved RANS model agree well with the data

References in this page
1. S. Abe et. al., JAEA approach OECD/NEA PANDA Benchmark, Erosion of a stratified layer by a buoyant jet in a large volume, presented in the poster session at the CFD4NRS-5, 2014
2. S. Abe et. al., RANS analyses on erosion behavior of density stratification consisted of helium-air mixture gas by a low momentum vertical buoyant jet in the PANDA test facility, the third International Benchmark exercise (IBE-3), submitted to Nucl. Eng. Des.

Note: reprinted from Ref.1.
Future Plans for Stratified Layer Analysis

- Effects of mesh geometry*
 - Already identified
 - Hexahedral mesh recommended in some CFD Best Practice Guidelines
 - Several merits of tetrahedral mesh
 - Investigate a numerical scheme

- Models validation and improvement using exp. data from CIGMA and small-scale test facilities

* The use of the hexahedral mesh was recommended by Dr. Studer of CEA to Dr. Abe, one of Authors, when he visited the CEA Saclay.
3. Wall condensation with noncondensables

- CFD Analysis of test data in literature
 - Condensation of steam-air mixture on horizontal wall
 - OpenFOAM: open source CFD code
 - Analysis models
 - Condensation rate determined by diffusion of steam
 - Thermodynamic equilibrium, No phase change
 - Liquid film not modeled
 - Liquid surface temp. given as a boundary condition
 - Results
 - Distribution predicted well for fluid velocity, but not for temperature, which suggests
 - Requirement in model improvement?
 - Problem in measurement?
- Planned experiments at JAEA
 - Atmospheric pressure
 - Slope changed: horizontal to vertical

Note: The figures showing comparisons are reprinted from Ref. 1.
Summary

- The ROSA-SA project started in 2013 for research on containment thermal hydraulics related to:
 - Containment over-temperature damage
 - Hydrogen risk
 - Aerosol and gaseous FP transport

- The project has focused on:
 - Development of a large-scale containment experiment facility CIGMA & separate effects test facilities for condensation, density stratified layer, pool scrubbing, instrumentation testing, etc
 - CFD analyses of literature data to identify technical issues and improve analysis models

- The CIGMA tests will start in 2015

Acknowledgments: The CIGMA facility is developed under the auspices of the Nuclear Regulation Authority (NRA), Japan. We appreciate the technical discussions with the NRA staffs.