

Lessons Learned from Fukushima on Modeling of Severe Accidents and Future Research Directions for MAAP

Rosa Yang EPRI Fellow

Dave Luxat ERIN Engineering and Research, Inc.

> **Rick Wachowiak** Principal Technical Leader, EPRI

International Experts' Meeting on Strengthening R&D Effectiveness in the Light of the Accidents at the Fukushima Daiichi Nuclear Power Plant Vienna, Austria February 16-20, 2015

MAAP in light of Fukushima Daiichi

- Understanding accident progression critical to
 - Enhancing emergency procedures and guidelines
 - Identifying debris location to plan decommissioning activities

Key Experiments and Analyses used in MAAP Development

CORE DEGRADATION	CORE SLUMP INTO LOWER HEAD	LOWER HEAD FAILURE	CORE RELOCATION TO BASEMAT	MELT SPREADING	MCCI	MELT COOLABILITY	FISSION PRODUCT/ AEROSOL TRANSPORT	FISSION PRODUCT/ AEROSOL SCRUBBING	CONTAINMENT RESPONSE, DCH & HYDROGEN CONTROL
CODES						1		1	1
MAAP 3			MAAP 3		MAAP 3				
MAAP 4		I a la							
						1	RAFT	 	
CORMLT*	THIRMAL		THIRMAL	MELT- SPREAD	CORCON- UW		NAUA- HYGROS*	SUPRA*	GOTHIC
EXPERIMENT	s I		1 1			1		1	1
LOFT*	FAI* FARO	FAI* FARO CORVIS UCLA TMI-VIP*	CORVIS	FAI*	ACE.	MACE	STEP* ACE-A*, B* LACE*	BCL* ACE-A*	AECL* FMRC* ACUREX* HEDL* NTS* & ANL*
ACE — Advanced Containment Experiments ACUREX — Acurex Corp. AECL — Atomic Energy of Canada, Ltd. ANL — Argonne National Laboratory BCL — Battelle Columbus Laboratories Experiments CORCON — Molten <u>Core</u> — <u>Con</u> crete Interaction Code CORVIS — <u>Corium Reactor Vessel Interaction Studies</u> DCH — Direct Containment Heating FAI — Fauske and Associates, Inc. FARO — CEC Fuel Coolant Interaction Facility FMRC — Factory Mutual Research Corp. GOTHIC — <u>Generation of Thermal-Hydraulic</u> Information in Containments HEDL — <u>Hanford Engineering Development Laboratory</u> *Completed				LACE — LWR Aerosol Containment Experiments LOFT — Loss of Eluid Test Facility MAAP — Modular Accident Analysis Program MACE — Melt Attack and Coolability Experiments MCCI — Molten Corium—Concrete Interaction MELTSPREAD — Melt Spreading Code NAUAHYGROS — Nachunfallaerosalverhaltens-Hygroscopic Aerosols NTS — USDOE Nevada Test Site RAFT — Reactor Aerosol Formation and Transport STEP — Source Term Experiments Project SUPRA — Suppression Pool Retention Analysis THIRMAL — Thermal-Hydrodynamic Interaction and Reaction of Melt and Liquid TMI-VIP — Three Mile Island Vessel Investigation Project UW — University of Wisconsin					

Ref: Technical Foundation of Reactor Safety, Rev1, EPRI 1022186, Oct 2010

Limited reactor scale information available

Accident Analysis – Focus on Root Causes and Safety Lessons Learned

- Core Damage
- Containment Impairment
- Hydrogen Explosion
- Off-site Consequence

Enhancing Assessment of Accident Progression

- Limited data available from event
- Analytical methods aid in forensic evaluation
- Fukushima Technical Evaluation: EPRI 1025750, April 2013

Uncertainty in Evaluation of Core Status

Unit 1

Units 2 & 3

Extensive core melting due to degraded water injection

Uncertainty in Evaluation of Containment Response

Enhanced containment pressurization prior to core damage

- ELAP scenarios bring in additional physics
 - Buoyancy can dominate gas and water flows in containment

Thermal stratification in containment for ELAP scenarios

Key Model Improvements for MAAP5

- Enhanced BWR core melt progression
- More detailed BWR lower plenum model
- BWR penetration and ex-vessel control rod drive structure models
- Debris behavior in containment
 - Molten Core-Concrete Interaction (MCCI) enhancement
 - Ex-vessel debris coolability
- BWR Thermal Hydraulics
- Containment Stratification Model

METI funding obtained for MAAP5 enhancements

Enhanced Core Relocation Modeling

Conceivable Melt Relocation Paths to Lower Plenum

- Path 1: Through open coolant inlet channels
- **Path 2A**: Through core plate due to creep rupture/collapse
- **Path 2B**: Through core support plate holes for in-core instrument tubes due to tube melting
- **Path 3**: Through gap in the control blade opening inside the fuel support piece
- **Path 4**: Through shroud wall breach due to thermal attack from molten pool

Modeling of Instrument Tube Degradation

Enhanced Ex-Vessel Debris Modeling

Enhanced evaluation of potential for drywell liner melting following RPV failure

Enhanced Containment Modeling – Stratification Phenomena

Development of thermal stratification in suppression pool

- Relevance to containment pressurization
- Key safety insight from Fukushima Daiichi

Example Simulation – MAAP5 Model Enhancement

Core Damage Progression – Future R&D

- Computer model validation
 - Separate effect tests
- MAAP-MELCOR Crosswalk first phase
 - Distinct core damage progression modeling
 - Established framework for identifying key gaps in knowledge base
- Key area of divergence between models
 - Representation of progression at reactor scale
- DOE/EPRI gap analysis
 - Identified as a high priority area

Key uncertainty in extrapolation of models to reactor scale

MELCOR

MAAP-MELCOR Crosswalk: EPRI 3002004449, November 2014

Beyond Design Basis RCIC Operation – Future R&D

How should RCIC be operated outside design basis?

Severe Accident R&D – Looking Forward

- Good representation of overall plant response
 - Fukushima root cause evaluation
 - Robust PRA conclusions
- Uncertainties in core damage progression details
 - Highly relevant to assessing impact of mitigation measures
- Substantial insights to be developed from Fukushima
 - Interplay between decommissioning and accident evaluation
 - Insights to refine future experimental programs

Unit 1

Units 2 & 3

Together...Shaping the Future of Electricity

