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Introduction 

 GRS is contracted by the German federal authority BMUB to analyse in 
detail the plant behaviour of a Konvoi-PWR during severe accidents  

 Simulation of these accidents with an integral code from initiating event 
until failure of RPV, utilising 

 GRS simulation software ATLAS (with possibility of online 
interaction)  

 Coupled version of  ATHLET-CD/COCOSYS 

 Analysing  

 Core melting in detail (when, where and how) 

 Relocation to lower plenum and behaviour of molten pool 

 Zircaloy steam oxidation, release of hydrogen, fission products and 
aerosols out of the core 

 Transport and deposition of fission products and aerosols in primary 
circuit and distribution in containment 
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GRS Codes Utilised  

ATHLET-CD 

ATHLET 

COCOSYS 

Design basis accidents 

Basis for thermofluid dynamics 

Severe accidents 

- Oxidation, quenching and melting processes 

- Debris bed and formation of melting pool and 

crust 

- Release and transport of H2, fission products and 

aerosols in primary circuit 

- Relocation of mass and energy 

- Phenomena in lower plenum 

Containment behaviour during  

- Design basis accidents 

- Severe accidents 

more information on GRS-Codes: www.grs.de 
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Simulation of Station Blackout (SBO) 

5 

Nodalization scheme of the PWR primary circuit and of containment 

core: 
4 concentric rod zones 

steam generator: 
3 tube bundles 

COCOSYS containment model 
(226 zones) 
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Plant Behaviour before Core Melting (1) 

 SBO was initiated by setting grid, generator and all emergency diesels 

unavailable 

 For 5000 s after SCRAM: Heat removal via natural circulation and 

secondary side steam release 

 After 5000 s: Due to emptying of steam generator heat removal via 

opening of pressurizer valves 
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Plant Behaviour before Core Melting (2) 

7 

 After ca. 7500 s: After fill up of pressurizer due to volume 

expansion pressurizer safety valves open   

 Two phase flow into containment 

 Reactor Pressure Vessel (RPV) level begins to drop 
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Start of Core Melting 

 After ca. 10000 s: rise of void fraction and of core temperature  

 Begin of core melting: Control rod material (at 800 °C), cladding  

(at 1200 °C), fuel (at 2300 °C) 
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Core Status at 14000 s 
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13 vertical  

rod zones 

molten down   

regions 

deposited crust 

zone 1 

zone 13 
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Oxidation and H2 Generation  

 At 800 °C cladding temperature   

additional heat and H2 generation due to zirconium-water-reaction 

 

IAEA-CN-235-22 10 

Residual heat 

Heat generation 

0,0E+00

1,0E+08

2,0E+08

3,0E+08

4,0E+08

12000 13000 14000 15000

W
a
tt

Sekunden

NZL +QOXI

500

1000

1500

2000

2500

11000 12000 13000 14000

°C

Sekunden

Kernring 1 (innen) [°C]

0

200

400

600

800

11000 12000 13000 14000

kg

Sekunden

Kummulierte H2-Erzeugung [kg]

start of oxidation reaction 

oxidations peak 

Cladding Temperature 

Heat Generation 

residual heat 

Cumulated H2 Generation 

time [s]  

time [s] 

time [s] 

m
a
s
s
 [
kg

] 

p
o
w

e
r 

[W
] 

te
m

p
e
ra

tu
re

 [
°C

] 

February 16-20,2015 



Clearing of Loop Seal 

 Clearing of loop seal in loop 3 after 10000 s 
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Thermal Load on Primary Circuit Pipes 

 Thermal load in loop 3 rises after clearance of loop  

• Prior structure analysis:  

pipe failure at ca. 850 °C under high pressure 

•  Assumption: Large LOCA (0,44 m²) in hot leg 3 at 14200 s (850 °C) 
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Situation after Hot Leg Pipe Failure 
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Relocation of Core Melt 

Assumption:  

failure of lower core grid plate caused by load of 65 t molten core material 

 Core melt relocation to lower plenum at ca. 23000 s  
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Lower Plenum Behaviour and RPV Failure 

 Interaction of core melt with RPV-wall 

 RPV failure at ca. 30800 s  ≈  8,5 h 
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Hydrogen Release in Containment 

Burning region at LOCA location is passed within 2 seconds 

16 

start of record:  

LOCA at 14180 s 

end of record at 14240 s 

14182 s 
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Release of Fission Products into Containment  

 After LOCA ≈ 90 % of Iodine rapidly released (gaseous) 

 ≈ 10% of Iodine released later as chemical combination with heavier 

elements  

 Most part of Caesium released after core melt relocation (≈ 90 % in 

total) 
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Distribution of Containment Parameters:  

Steam, H2 and Temperature 

At 14200 s (after large break LOCA in hot leg)  

18 

Steam fraction up to 85 % H2 fraction up to 15 % Temperature up to 230 °C 

Scale: 0 % - 100 % Scale: 0 % - 20 % Scale: 30 °C – 500 °C 
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Pressure in Containment 

 Pressure remains below venting criterion (7 barabs) 

 Pressure reduction due to recombiners (H2), condensation at 

containment structures (steam) and heat losses to environment  
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Summary and Conclusions (1) 

 SBO was analysed for a Konvoi type PWR  

• Grid, generator and all emergency diesels are set unavailable  

 Results: 

• 10200 s: clearance of loop seal in loop 3 with consequent  

               circulation of hot gases 

• 11500 s:  start of core melting 

• 14200 s: failure of hot leg pipe (loop 3) after exceeding  

               850 °C with transition to low pressure conditions  

               ( accumulator injection) 

• 23000 s: relocation of molten core to lower plenum 

• 30800 s: RPV failure  
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Summary and Conclusions (2) 

 Results (cont.): 

• Steam and H2 released to containment:  

 Steam condensation at structures  

 H2  recombination by autocatalytic recombiners 

• More than 90 % of Iodine is released in an early stage of  

core melting and cumulates mainly in the containment dome 

• Ca. 90 % of Caesium is released but main part after core  

melt relocation 

• Containment remains within design limits until RPV failure 

 ATHLET-CD/COCOSYS analyses of containment behaviour  

after RPV failure with consideration of e.g. “Direct Containment 

Heating”  (DCH)  and “Molten Core Concrete Interaction” (MCCI) 

are subject of ongoing research at GRS 
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Thank you for your attention! 

For questions please contact: 

Gerhard Mayer:  Gerhard.Mayer@grs.de 
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