

Analyses of the Plant Behaviour of a PWR During Severe Accidents with Multiple Failures of Safety Systems

Gerhard Mayer

Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH

IEM8 - International Experts' Meeting on Strengthening Research and Development Effectiveness in the Light of the Accident at the Fukushima Daiichi Nuclear Power Plant IAEA, Vienna, February 16 – 20, 2015

Contents

- Introduction
- Structure and capabilities of used analysis codes
- Analysis of a station blackout (SBO) in a PWR
- Summary and conclusions

Introduction

- GRS is contracted by the German federal authority BMUB to analyse in detail the plant behaviour of a Konvoi-PWR during severe accidents
- Simulation of these accidents with an integral code from initiating event until failure of RPV, utilising
 - GRS simulation software ATLAS (with possibility of online interaction)
 - Coupled version of ATHLET-CD/COCOSYS
- Analysing
 - Core melting in detail (when, where and how)
 - Relocation to lower plenum and behaviour of molten pool
 - Zircaloy steam oxidation, release of hydrogen, fission products and aerosols out of the core
 - Transport and deposition of fission products and aerosols in primary circuit and distribution in containment

GRS Codes Utilised

Design basis accidents Basis for thermofluid dynamics

Severe accidents

- Oxidation, quenching and melting processes
- Debris bed and formation of melting pool and crust
- Release and transport of H₂, fission products and aerosols in primary circuit
- Relocation of mass and energy
- Phenomena in lower plenum

Containment behaviour during

- Design basis accidents
- Severe accidents

more information on GRS-Codes: www.grs.de

Simulation of Station Blackout (SBO)

Nodalization scheme of the PWR primary circuit and of containment

COCOSYS containment model (226 zones)

Plant Behaviour before Core Melting (1)

- SBO was initiated by setting grid, generator and all emergency diesels unavailable
- For 5000 s after SCRAM: Heat removal via natural circulation and secondary side steam release
- After 5000 s: Due to emptying of steam generator heat removal via opening of pressurizer valves

Plant Behaviour before Core Melting (2)

- After ca. 7500 s: After fill up of pressurizer due to volume expansion pressurizer safety valves open \rightarrow Two phase flow into containment
- Reactor Pressure Vessel (RPV) level begins to drop

Start of Core Melting

 After ca. 10000 s: rise of void fraction and of core temperature → Begin of core melting: Control rod material (at 800 °C), cladding (at 1200 °C), fuel (at 2300 °C)

Core Status at 14000 s

Oxidation and H₂ Generation

 At 800 °C cladding temperature → additional heat and H₂ generation due to zirconium-water-reaction

Clearing of Loop Seal

Clearing of loop seal in loop 3 after 10000 s

Thermal Load on Primary Circuit Pipes

- Thermal load in loop 3 rises after clearance of loop
 - Prior structure analysis: pipe failure at ca. 850 °C under high pressure
 - Assumption: Large LOCA (0,44 m²) in hot leg 3 at 14200 s (850 °C)

Situation after Hot Leg Pipe Failure

Relocation of Core Melt

Assumption:

failure of lower core grid plate caused by load of 65 t molten core material

Core melt relocation to lower plenum at ca. 23000 s

Lower Plenum Behaviour and RPV Failure

- Interaction of core melt with RPV-wall
 - > RPV failure at ca. 30800 s \approx 8,5 h

Hydrogen Release in Containment

Burning region at LOCA location is passed within 2 seconds

Problem Time: 15240.00000 Date: 20.03.2014 11:12:00 ATLAS - VERS, 5.1_Sep 5 2013

C:/ccccsys/new_all.ncf

Release of Fission Products into Containment

- After LOCA ≈ 90 % of lodine rapidly released (gaseous)
- ≈ 10% of lodine released later as chemical combination with heavier elements
- Most part of Caesium released after core melt relocation (~ 90 % in total)

Relative Release of Iodine and Caesium

Distribution of Containment Parameters: Steam, H₂ and **Temperature**

At 14200 s (after large break LOCA in hot leg)

Scale: 0 % - 100 %

 H_2 fraction up to 15 %

Scale: 0 % - 20 %

Scale: 30 °C – 500 °C

GRS

Pressure in Containment

- Pressure remains below venting criterion (7 bar_{abs})
- Pressure reduction due to recombiners (H₂), condensation at containment structures (steam) and heat losses to environment

Summary and Conclusions (1)

- SBO was analysed for a Konvoi type PWR
 - Grid, generator and all emergency diesels are set unavailable
- Results:
 - 10200 s: clearance of loop seal in loop 3 with consequent circulation of hot gases
 - 11500 s: start of core melting
 - 14200 s: failure of hot leg pipe (loop 3) after exceeding 850 °C with transition to low pressure conditions (→ accumulator injection)
 - 23000 s: relocation of molten core to lower plenum
 - 30800 s: RPV failure

Summary and Conclusions (2)

- Results (cont.):
 - Steam and H₂ released to containment:
 - Steam condensation at structures
 - H₂ recombination by autocatalytic recombiners
 - More than 90 % of lodine is released in an early stage of core melting and cumulates mainly in the containment dome
 - Ca. 90 % of Caesium is released but main part after core melt relocation
 - Containment remains within design limits until RPV failure
- ATHLET-CD/COCOSYS analyses of containment behaviour after RPV failure with consideration of e.g. "Direct Containment Heating" (DCH) and "Molten Core Concrete Interaction" (MCCI) are subject of ongoing research at GRS

Thank you for your attention!

For questions please contact:

Gerhard Mayer: <u>Gerhard.Mayer@grs.de</u>