

ANALYSIS OF THE FUKUSHIMA DAIICHI ACCIDENT FROM A HUMAN AND ORGANIZATIONAL PERSPECTIVE

Quentin BAUDARD, Hélène PESME, Pierre LE BOT

EDF R&D France / Industrial Risk Management Department / Human and Organizational Factors Group

IAEA - IEM8 - Vienna 18/02/2015

INTRODUCTION : OBJECTIVES

A new paradigm for HRA?

Human Factor as the last barrier

Panel on Fukushima, HRA Society - PSAM11 ESREL12

Need for an analysis of the accident from a Human and Organizational perspective

- Decision making, Actions in the field
- Insights for PSA, HRA and SAM
- MONACOS & MERMOS (EDF's methods)
- New focuses to investigate

SUMMARY

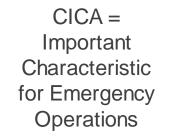
- **1.** WORK METHODOLOGY
- 2. MULTI UNIT MANAGEMENT
- **3.** FIELD WORK IN EXTREME SITUATION
- 4. CONCLUSIONS

WORK METHODOLOGY

- 1. Bibliography
- 2. The MONACOS model

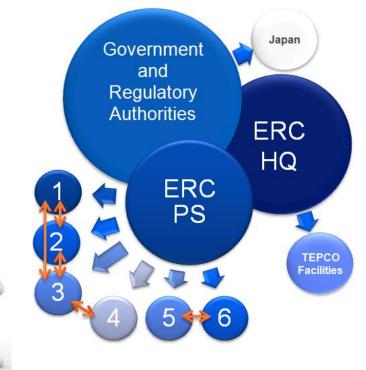
BIBLIOGRAPHY

- Fukushima Nuclear Accident Analysis Report and Attachments, June 20, 2012 (TEPCO)
- <u>Special Report on the Nuclear Accident at the Fukushima Daiichi Nuclear</u> <u>Power Station</u>, November 2011 (INPO)
- <u>Fukushima Daiichi : ANS Committee Report</u>, March 2012 (American Nuclear Society)
- <u>The official report of the Fukushima Nuclear Accident Independent</u> <u>Investigation Commission</u>, 2012 (The National Diet of Japan)
- Le déroulement de l'accident de Fukushima Daiichi, March 2012 (IRSN)


MONACOS MODEL FOR UNIT 3

Timestamp	Events	Operating Strategies			
11/03 – 14:46	Earthquake Reactor SCRAM	EOPs applied – Field e	EOPs applied – Field evacuation to MCR or ERC PS		
11/03 – 14:46		Reactor parameters control via RCIC			
11/03 – 15:35	Tsunami				
11/03 – 15:42	Confirmation of tsunami Loss of AC sources	Reactor parameters control via RCIC		Field checks of equipments and power	
12/03 - 00:00	DC, RCIC & HPCI ok	Low pressure injection line preparation		sources status	
12/03 – 11:36	Automatic shutdown of the RCIC	Manual activation of the HPCI	P _{PCV} control via	Restoration works	
12/03 - 15:36	H ₂ explosion on Unit 1		S/C then D/W spray Venting line preparation	Field evacuation	
12/03 – 17:20	P _{PCV} increase because of RCIC & HPCI operation	Reactor parameters control via HPCI			
13/03 - 2:42	P _{RPV} below HPCI operating pressure	HP \rightarrow LP switch preparation			
13/03 – 3:45		RPV depressurization via SRV attempts			
13/03 - 8:35		LP injection attempts		Damaged equipments restoration	
		SRV restoration and opening	Venting line		
13/03 - 9:08	P _{PCV} high enough for venting	LP injection failure	implementation		
	LP injection ok	RCIC or HPCI restart failure LP injection attempts			
13/03 - 9:20	Venting failure		Venting line valves		
13/03 - 10:40	Core damages		restoration	Restoration of long term	
13/03 – 13:12	Seawater injection		Temporary air compressors used	accident control equipments	
14/03 – 6:10	Venting confirmed	Water sources switch	to maintain valves opened	equipments	
14/03 - 11:01	H ₂ explosion on Unit 3	Field evacuation			
14/03 – 13:05	No cooling			Damaged equipments	
14/03 – 15:30	Cooling ok	Seawater injection resumed		restoration	
15/03 - 00:00	End of the analysis :	core damaged, small leaks in PCV and RPV, PCV vented, seawater injection			

MONACOS MODEL ANALYSIS


- Analysis of the CICAs allow a good understanding of the situation :
 - \square Why \rightarrow Context
 - \square Who \rightarrow Role of teams, decision making process, ...
 - \square Where \rightarrow Plant architecture, Accessibility and field conditions, ...
 - \square When \rightarrow Event progression
 - \square How \rightarrow Emergency procedures, imagination of teams, ...
 - \square What \rightarrow Results of the operating actions
- Performed on most of the CICAs for Units 1, 2 & 3
- Further analysis on each "critical points" of the accident :
 - IC operation misunderstanding between MCR and ERC at PS on Unit 1
 - PCV venting failure on Unit 2
 - \square High Pressure \rightarrow Low Pressure switch failure on unit 3

MULTI UNIT MANAGEMENT

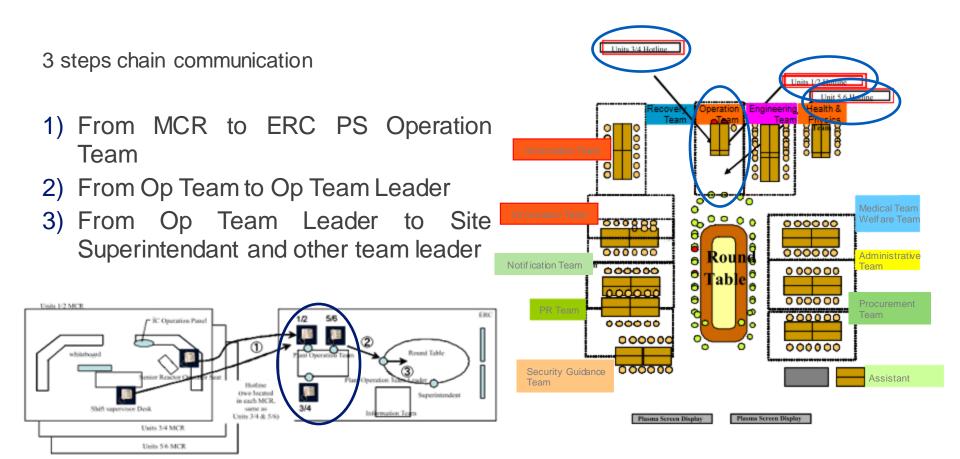
- **1.** Situation at Fukushima Daiichi
- 2. Unit Interactions Analysis

LOCAL TEAMS ORGANISATION

Main Control Room :

□ Same operation team and MCR for unit **pairs** : 1&2, 3&4, 5&6

□ 24 persons per pair of MCR :


- 14 Operators including the shift supervisor
- 10 Field workers

Emergency Response Center at the Power Station

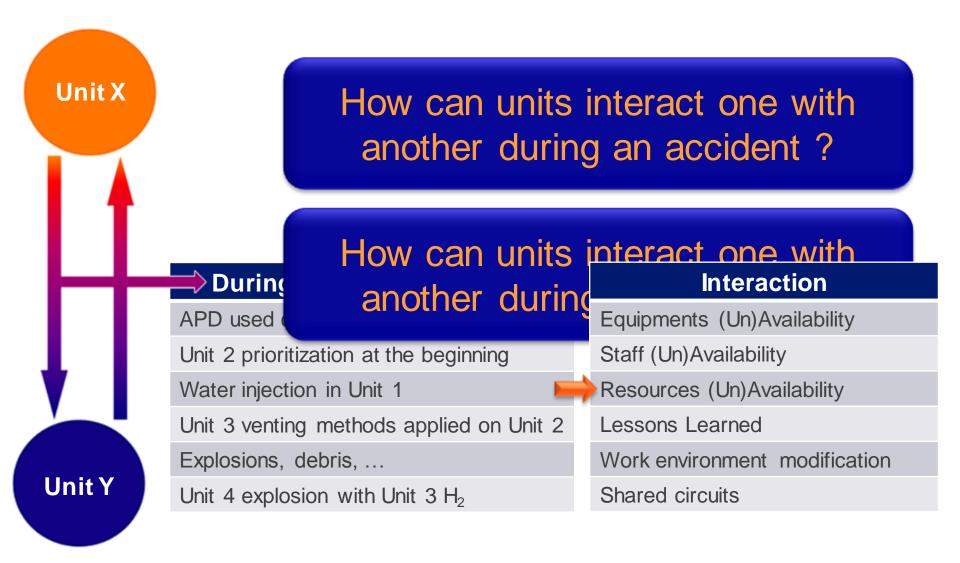
- \square 12 teams \approx 400 persons including the Site Superintendant
 - Recovery, Health & Physics, Engineering, Operation, ...
- Located in a seismic isolated building, already on site after the earthquake

LOCAL TEAMS ORGANISATION

MONACOS MODEL FOR THE ERC at PS

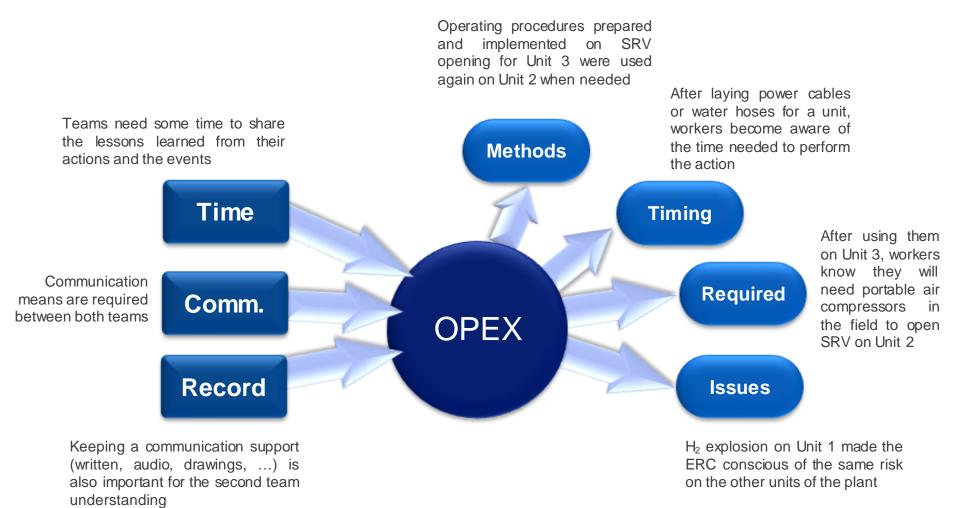
CICAs for the ERC at Power Station

Main points :


- Different dynamics of the accidents :
 - 1:24 hours before explosion
 - 3 : 68 hours before explosion
 - 2:87 hours before PCV damages
- One specific problem per unit with different priorities :
 - 1 : IC operation
 - 2 : PCV Venting
 - 3 : HP/LP injection switch
- Important constraints in the field (explosions, tsunami...)
 - Accessibility of equipment locations
 - Discontinued field work

- ...

Communication and parameters monitoring difficulties



MULTI-UNIT INTERACTIONS

)F 20/02/2015

"REAL TIME" LESSONS LEARNED

FIELD WORK IN EXTREME SITUATION

- **1.** Synthesis of difficulties
- 2. Example
- 3. Discontinued work

Filling

Approximately **1,5km** between Main Control Rooms and the ERC at Power Station. On flat and clear land it takes about **15 minutes** by foot. On the site, the roads were damaged by the earthquake and on slopping ground so the walk would last a bit longer (maybe **20 minutes** ?)

an familiatio

Back and forth from MCR to ERC would take about **40** minutes, assuming that workers leave as soon as they arrive. In the facts, they had to **confirm** their **presence** to their team leaders.

Workers often received instruction to evacuate from the field to the ERC at PS, and walk all the way from field to higher ground.

→ This is one of the reasons it takes more than an hour for field checks to start after explosions, alerts, ...

WORKING CONDITIONS

Work in dark places

No means of communication with the ERC at Power Station, Obstacle and debris spread about the field, Shifts needed as work performed wearing protective clothing in high dose environment...

AND

Manhole covers missing underwater

Discontinued work due to aftershocks, tsunami alerts, ...

Date	Entries	Events Operating Actions and communications	•
11/3/11 14:46	Units in operation at full power		
11/3/11 15:35	Biggest tsunami wave arrives on site	"Manhole covers had been dislodged by the force of the water, so we walked through the debris by the light of the moon checking step by step to make sure there were no holes ".	
11/3/11 15:37	Loss of unit 1 AC power sources Loss of unit 1 DC power sources Loss of unit 3 AC power sources DC power sources for unit 3 available but limited RCIC manually started but status unknowr Loss of unit 2 AC power sources Loss of unit 2 DC power sources	"Laying cable takes 1 to 2 months under ordinary conditions. Doing it in a couple of hours was unprecedented"	
	ERC to NISA : Article 10 situation (Station Black Out) IC statuts unknown Roads safety cheks on site Off site power checks RCIC manually started, operations confirme ERC to NISA : Article 15 situation (Loss of EC ERC to MCR confirmation of IC operation via stean	"Aftershocks caused the most trouble. We'd leave and have to come back, leave and come back. And, it took time to confirm safety in each earthquake	
11/3/11 16:44 11/3/11 18:00 11/3/11 18:25	Article 15 situation notification Article 15 situation notification Fire engines conditions checks - 1/3 availab Electrical distribution systems checks begin ERCPS understands that IC is operating prop In facts, IC has been stopped by MCR operat Connection road between units 2 and 3 cleal ERCPS understands that DDFP inject water in IC	would rush back as if our life was in danger. So, we weren't ready to merely head back out after the quake ended and usually needed two hours or so to recover after which we headed back out"	erent
11/3/11 23:05	ERC PS works on venting PCV without powe Dower sectoration in MCD with small general Firts power supply vehicles arrive on site from T ERC PS forbids entry in unit 1 R/B Plants parameters are considered abnorma	«= comoutside	
12/3/11 2:55	PCV venting ordered PCC operations confirmed Unit 1 is prioritized over Unit 2 water injection in the values	didn't know whether their families were dead or alive because the phones weren't working"earthquake earthquake	nents
12/3/11 10:40	ERC PS considers that PCV venting has worke ERC PS estimates that PCV venting hasn't been su Seawater injection preparation PCV pressure control via S/Cspray water injection pranning . Kolor-2 mcl-2 of	"I was finally able to meet up with my family at the evacuation center on March 27th, 16 days after	ting
12/3/11 14:00 12/3/11 15:36	Temporary Air Compressors distributed by ER Temporary Air Compressors distributed by ER Unit 1 Hydrogen Explosion	the disaster."	

CONCLUSIONS

- **1.** Severe accident management
- 2. Perspectives

SEVERE ACCIDENT MANAGEMENT

Different accidents on each reactor

New issues

Severe accident environment's impact
Multi units interactions

- Emergency team operation
- A very rich feedback

In depth detailed operations' analysis is very fruitful

PERSPECTIVES

- Clarify unclear points
- Extend the analysis to Units 4, 5 & 6 (work in progress)
- Search for other "site accidents" (Blayais, Oconee, Fukushima Daini,...) to improve the multi unit interactions' modeling
- Model the organisational resilience
- Insights for HRA

THANK YOU FOR YOUR ATTENTION

Fukushima H&O Analysis | 21