

The Effect of Fukushima on Research Activities in CIEMAT related to Severe Accidents

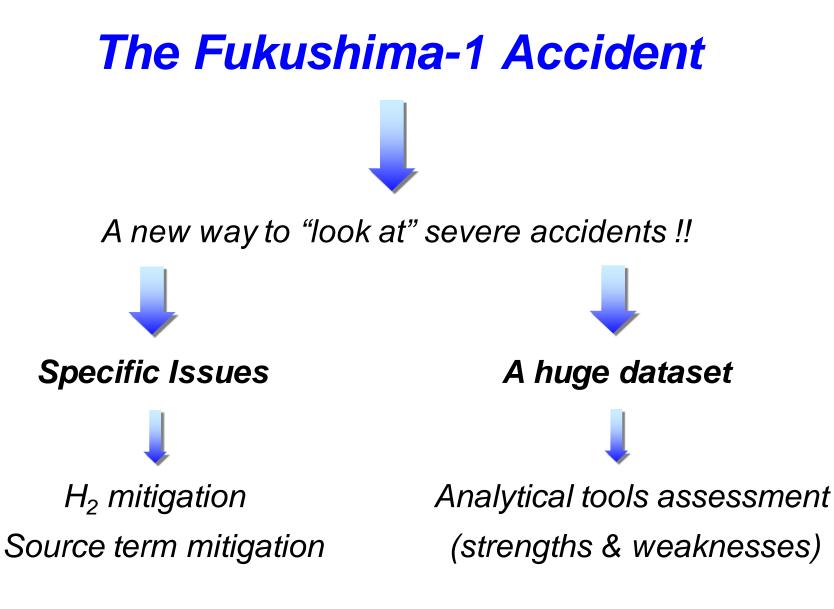
Luis E. Herranz (CIEMAT), E. Riera (CSIC)

Presented by: Joan Fontanet (CIEMAT)

OUTLINE

- BACKGROUND
- OBJECTIVE & SCOPE
- OVERVIEW of ACTIVITIES
- THE EU-PASSAM PROJECT
- THE OECD-BSAF PROJECT
- FINAL REMARKS

Unit of Nuclear Safety Research



BACKGROUND

Unit of Nuclear Safety Research

Unit of Nuclear Safety Research

OBJECTIVE & SCOPE

- To describe major research activities in CIEMAT resulting from the accident.
- To briefly sum up some on-going international projects.

Scope

- Restricted to the Unit on Nuclear Safety Research (15 people; 11 scientists).
- Restricted to activities directly-related to severe accidents.

Unit of Nuclear Safety Research

OVERVIEW of ACTIVITIES

Unit of Nuclear Safety Research

- Modeling the Spanish BWR3 Mark-I Updating (MELCOR 2.1) and upgrading
- H₂ distribution studies (stratification break-up) 3D simulations of HYMERES tests
- Generic modeling Mark-I containments ASTEC input deck build-up (CESAM)
- Simulation of pool scrubbing tests SPARC-B (ASTEC) assessment (CESAM)
- Simulation of SFP fire tests *Out-of-reactor application of ASTEC (CESAM)*
 - Measurement of pool DFs (PASSAM) Experimentation on pool scrubbing
- Experimentation on mitigation >>> Acoustic agglomeration efficiency (PASSAM)

Unit of Nuclear Safety Research

THE EU-PASSAM PROJECT

Unit of Nuclear Safety Research

Key Project Features

- **Duration:** January 2013 December 2016
- **Effort:** 390 person-month (\cong 9 researchers/year x 4 years)
- **Total Cost:** 5.1 M€
- **Project nature:** Experimental (74% of the effort on testing)
- **Partners:** IRSN; CIEMAT; CSIC; EDF; PSI; RSE; VTT; AREVA; U. Lorraine

Unit of Nuclear Safety Research

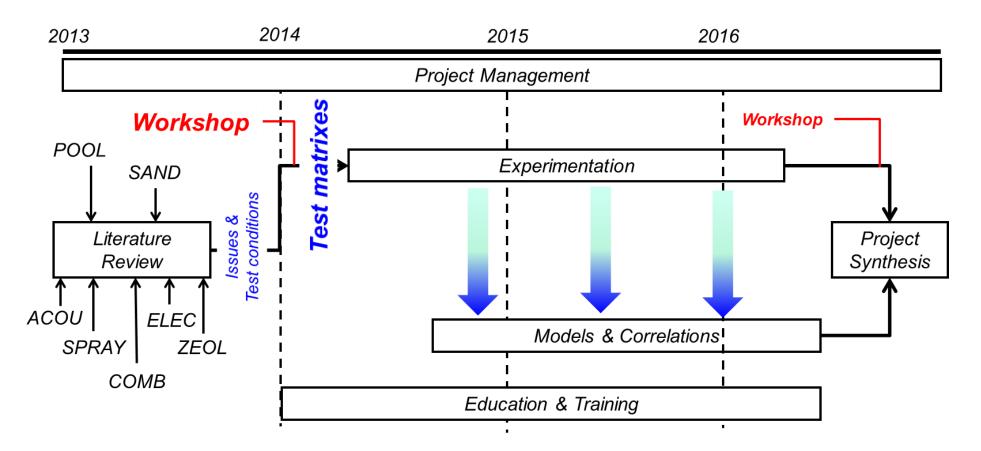
- Explore potential enhancement of existing source term mitigation devices.
 - Aqueous ponds.
 - Sand bed filter (metallic pre-filters) source term attenuations.
- Demonstrate the ability of innovative systems to achieve even larger source term attenuations.

Preconditioning stage

- Acoustic agglomerators.
- High pressure sprays.

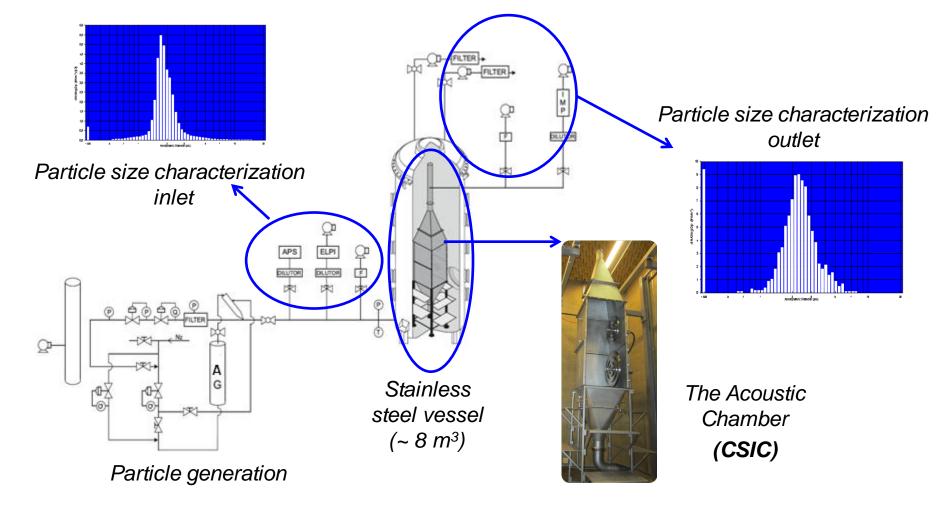
Filtering stage

- Electrostatic filters.
- Improved zeolites.
- Dry & wet combined filters.


Vienna (Austria), Feb. 16-20, 2015

Unit of Nuclear Safety Research

Planning



 $\leftarrow ACOU \rightarrow \leftarrow POOL \rightarrow$

The ACOU Tests: The PECA-AAA Facility

Unit of Nuclear Safety Research

The ACOU Tests: Experimental Matrix

Test	US Frequency (kHz)	Power Applied (W)	Gas Composition	Temperature (°C)	v _{gas} (m/s)	C _{aerosol} (g/Nm ³)	d _{part} (µm)	Remarks
T01	21	300	Air	T _{room}	0	0.1-1	~0.1	Static test without and with ultrasonic field
T02	21	300	Air	T _{room}	0	0.1-1	~1	Static test without and with ultrasonic field
T1	21	300	Air	T _{room}	0.05	0.01	~0.1	High gas velocity/High concentration (hgv1) without and with ultrasonic field
Т2	21	300	Air	T _{room}	0.05	<0.01	~0.1	High gas velocity/Low Concentration (hgv2) without and with ultrasonic field
Т3	21	300	Air	T _{room}	0.025	0.02	~0.1	Low gas velocity/high concentration (lgv1) without and with ultrasonic field
T4	21	300	Air	T _{room}	0.025	<0.02	~0.1	Low gas velocity/Low Concentration (lgv2) without and with ultrasonic field
Т5	21	300	Air	T _{room}	0.05	<0.01	~1	Particle size effect (hgvp1) without and with ultrasonic field
Т6	21	300	Air	T _{room}	0.025	<0.02	~1	Particle size effect (lgvp1) without and with ultrasonic field
Т7	21	300	Air	T _{room}	0.05	0.01	~1	Particle size effect (hgvp2) without and with ultrasonic field
Т8	21	300	Air	T _{room}	0.025	0.02	~1	Particle size effect (hgvp2) without and with ultrasonic field
Т9	21	300	Air	T _{room}	0.05	<0.01	~0.1	Relative humidity effect (hgvrh1) without and with ultrasonic field
T10	21	300	Air	T _{room}	0.05	0.01	~1	Relative humidity effect (hgvrh2) without and with ultrasonic field
T11	21	300	Air					Reproducibility test - TBD without and with ultrasonic field
T12	21	300	Air					Reproducibility test - TBD without and with ultrasonic field

SOBIERNO

DE ESPAÑA

MINISTERIO

DE ECONOMÍA

COMPETITIVIDAD

Ciemat

Centro de Investigacion

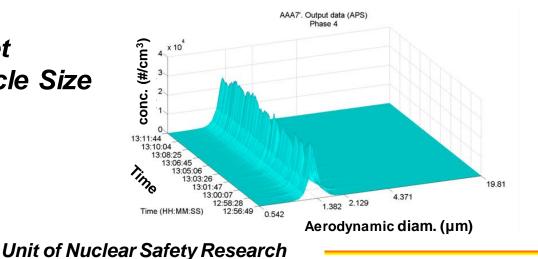
Energéticas, Medioambientales

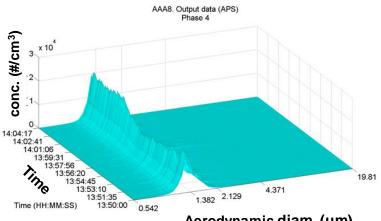
y Tecnológicas

The ACOU Tests: Experimental Matrix

Test	US Frequenc (kHz)		ower pplied (W)	Gas Composition	Temperature (°C)	v _{gas} (m/s)	C _{aerosol} (g/Nm ³)	d _{part} (µm)	F	Remar	ks
T01	21				Dentiales C						st trasonic field
Т02	21				Particles G		or Loaa				st trasonic field
T1	21	ELPI		_							ty/High (hgv1) trasonic field
Т2	21	-PF1					-PF3 +PF4	_		Intlet	ty/Low (hgv2)
Т3	21	+PF2 APS					+264		_	-	trasonic field concentration
T4	21	-SF1		-			-SF3				trasonic field Concentration
Т5	21	+SF2					+SF4] <u>}</u>	Oulet	trasonic field ct (hgvp1)
T6	21		0	15	30	0		15		min	trasonic field ct (lgvp1) trasonic field
Τ7	21		300	Air	T _{room}	0.05	0.01	~1			ect (hgvp2) ltrasonic field
Т8	21		300	Air	T _{room}	0.025	0.02	~1			ect (hgvp2) Itrasonic field
Т9	21		300	Air	T _{room}	0.05	<0.01	~0.1			effect (hgvrh1) Itrasonic field
T10	21		300	Air	T _{room}	0.05	0.01	~1			effect (hgvrh2) Itrasonic field
T11	21		300	Air							test - TBD Itrasonic field
T12	21		300	Air							test - TBD Itrasonic field

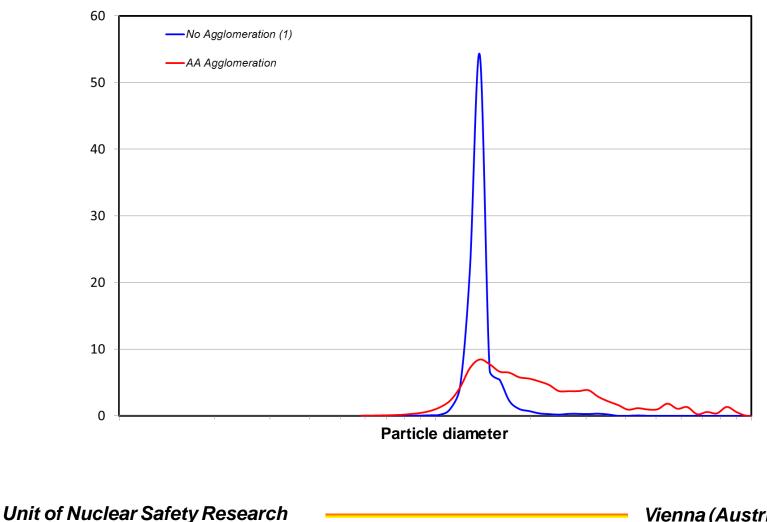
Vienna (Austria), Feb. 16-20, 2015




The ACOU Tests: Preliminary Results

Mass distribution

Time	Experiment	Phase	US	Input Mass	Inputairflow	Output Mass	Output air flow	Corrected Ouput	Mass Retention Increase
				(mg)	(I/min)	(mg)	(I/min)	(mg)	(%)
10:33	Τ7΄	1	No	3,950	35	4,200	29,1	5 <i>,</i> 052	38,5
10:41	Τ7΄	2	Yes	4,550	35	3,450	29,7	4,066	50,5
12:10	Τ7΄	3	No	5,500	35	4,550	29,3	5,435	44,7
12:19	Τ7΄	4	Yes	28,000	35	12,900	29,8	15,151	44,7
10:49	Т8	1	No	6,100	35	4,900	28,6	5,997	28,8
10:57	Т8	2	Yes	7,300	35	4,250	29,3	5 <i>,</i> 077	20,0
12:31	Т8	3	No	9,750	35	8,100	28,5	9,947	40.7
12:39	Т8	4	Yes	11,550	35	5,950	29,4	7,083	40,7



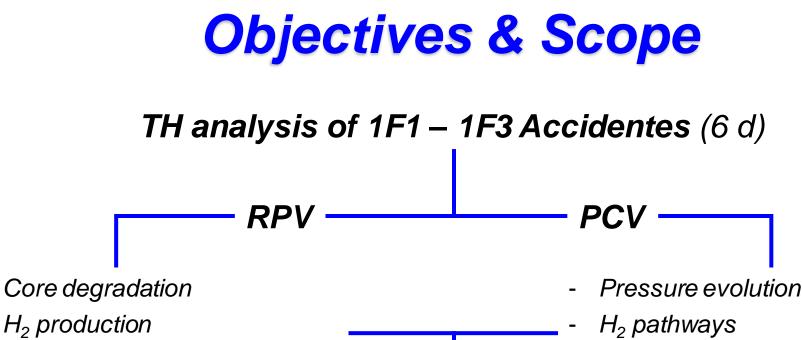
Aerodynamic diam. (µm)

The ACOU Tests: Anticipated Results

THE OECD-BSAF PROJECT

Unit of Nuclear Safety Research

Overall Description


• Restricted-participation project under the frame of the OECD-NEA.

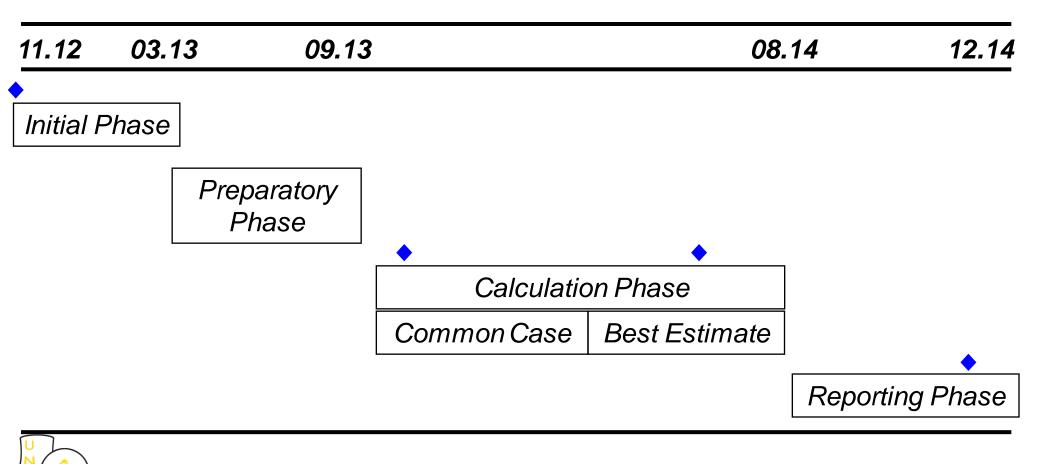
- **A 2-year project:** Nov. 2012 2014.
- **Operating agent:** JAEA in collaboration with IAE, JNES, CRIEPI and supported by TEPCO.
- **Participant countries:** France, Germany, Japan, Rep. of Korea, Russian Fed., Spain, Switzerland and USA.

Unit of Nuclear Safety Research

- Safety systems performance

Pedestal and cavity integrity

Amount & distribution of fuel debris


Decommissioning

Unit of Nuclear Safety Research

SA Codes Validation

Project Unfolding

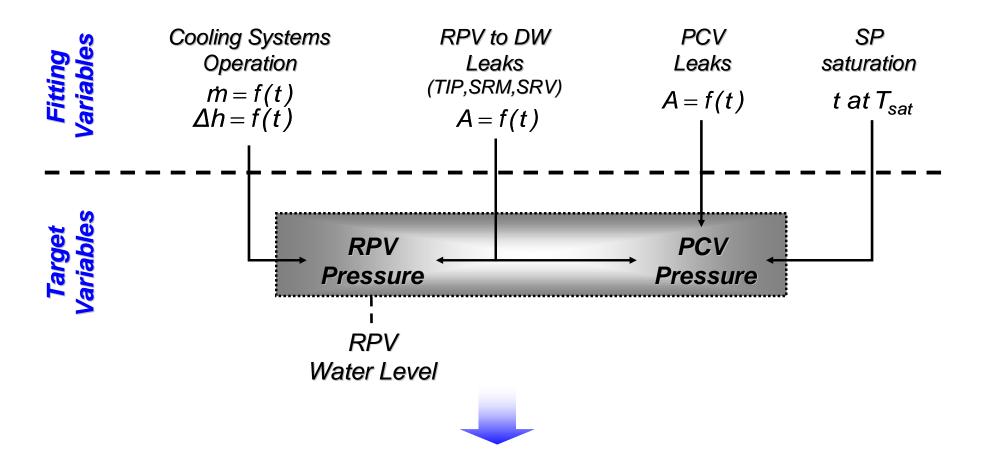
• Final reporting OECD-BSAF

Jan. – March 2015

- Discussion of OECD-BSAF II
 - 3-year project.
 - Technical focus:

a. Distribution of FPs and contaminated debris in the units.

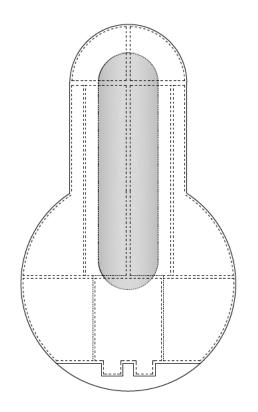
- b. Evaluation of source term
- c. Review of OECD-BSAF I modeling


Time span of analyses: 21 days

Vienna (Austria), Feb. 16-20, 2015

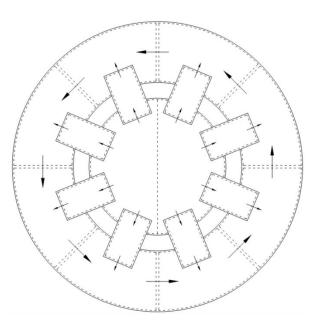
Jan. – March 2015

CIEMAT Overall Approach



Unit of Nuclear Safety Research

Generic Plant Modeling: PCV Nodalisation


DW

WW

	DW	WW	Vents	VBs
CVs	9	8	8	-
FLs	16	8	8	8

Volume	1F1	1F2	1F3	
DW (m ³)	3000	3770	3770	
WW (m ³)	4370	6140	6140	
(pool)	(1750)	(2980)	(2980)	

RB

Boundary Conditions

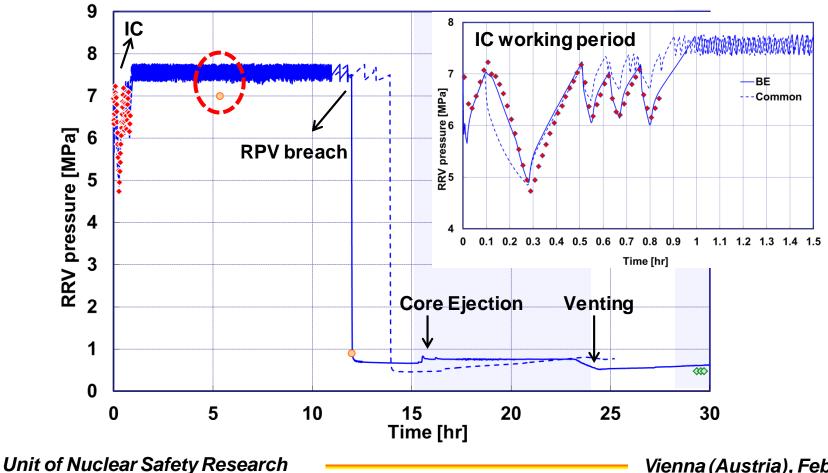
		1F1	1 F 2	1F3
Power [M	W _{th}]	1380	2381	2381
	IC	Ø	_	_
	RCIC	_		Ø
Systems	HPCI	_	_	Ø
	SRV	🗹 (4; 1 on)	🗹 (8; 1 on)	🗹 (8; 1 on)
	Sprays _{PCV}	_		Ø
Venting		Z (1)	_	Ø (6)
External V	Vater Injection	Ø		Ø
Torus Roo	om	Dry	Flooded	Dry

Unit of Nuclear Safety Research

Systems Modeling

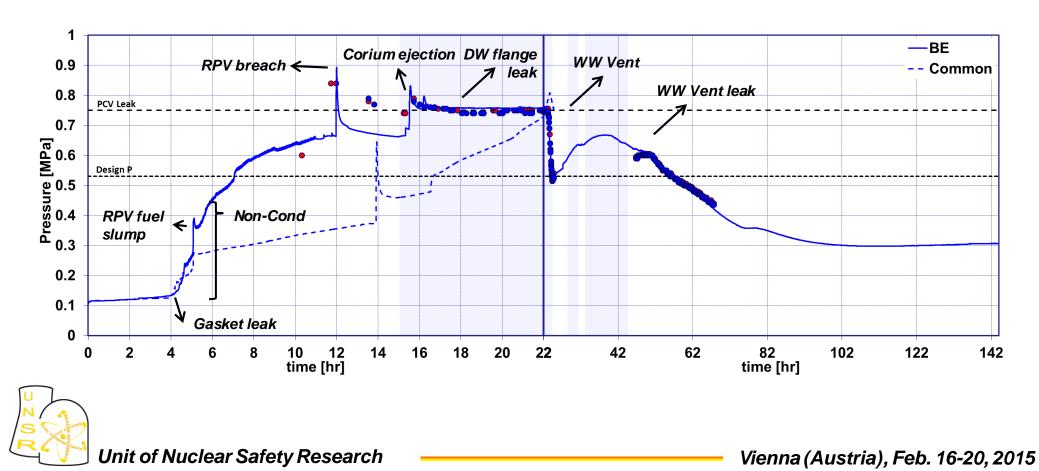
- Systems (IC, RCIC, HPCI): Modeled "to effect" (i.e. source/sink)
- Systems (SRV): Nominal setpoints
- Relief mode bf. SBO
- Safety mode af. SBO

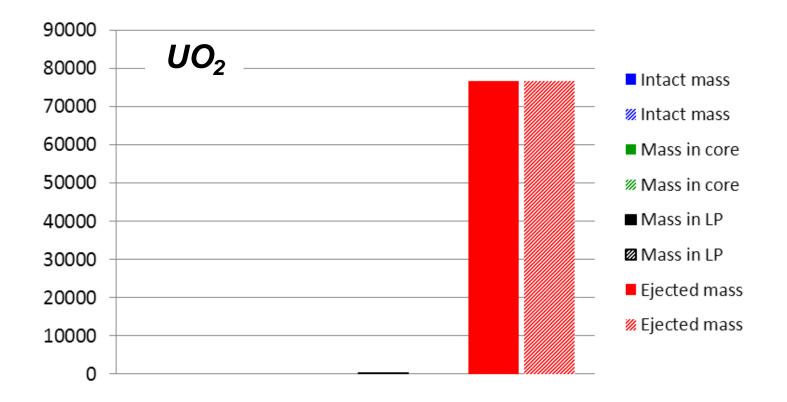
- **RPV leakages:** Best fit
- PCV leakages:
 Best fit
- **PCV ventings:** Best fit (t [s] & A [m²])
- **External water injections:** Best fit (t [s] & m [kg/s])



Unit of Nuclear Safety Research

Results (I): Unit 1


RPV Pressure


Results (II): Unit 1

PCV Pressure

Results (III): Unit 1

Unit of Nuclear Safety Research

Preliminary Insights

- 1F1 Core massively degraded and poured into PCV cavity.
 More than 7000 kg of H₂ + CO generated.
 Potential for liner failure.
- 1F2 Half of the core in LP; no RPV failure predicted. About 600 kg of H_2 generated.
- 1F3 Half of the core relocated in LP; no RPV failure. More than 1000 kg of H_2 generated.

Unit of Nuclear Safety Research

FINAL REMARKS

Unit of Nuclear Safety Research

- Upon the Fukushima accident, CIEMAT fitted its research on severe accidents according to major international trends.
 Additionally, CIEMAT has kept its own domestic activities.
- Experimental and analytical Fukushima-related research has been conducted since.
- Major Fukushima-related research focus on: Source Term mitigation and forensic accidents analysis.
- Within EU-PASSAM contribution is being made to database on **pool** scrubbing under jet injection and particle growth by acoustic fields.
- Within OECD-BSAF, potential accident scenarios are being proposed; nevertheless, these analyses are far from being the finals.

Thank you for your attention! Any questions?

Acknowledgments to EU and CSN who provided financial support for the work here presented.

