

ÚJV Řež, a. s.

Research Needs for Improvement of Severe Accident Management Strategies at Czech NPPs

Jiří Duspiva

International Experts' Meeting on Strengthening Research and Development Effectiveness in the Light of the Accident at the Fukushima Daiichi Nuclear Power Plant

Vienna, IAEA, February 16-20, 2015

Outline

- Background
- Research Needs Phenomenology
- Application to NPP SAM Program
- Specific Needs from SAM Application at Czech NPPs
- Conclusions

Background

- ÚJV Řež provides complex services in the areas connected to severe accident management to Czech NPPs owned and operated by ČEZ a.s.
 - Evaluation of source term
 - Accident progression
 - Identification of severe accident management strategies
 - Supporting analyses for optimization
 - Validation of existing SAMGs
 - Supporting analyses for
 - · Control room habitability
 - Development of layout of hydrogen mitigation system

Regimes during initiating event covered in SA analyses

- Operation at nominal power
- Reactor outage
 - Non-leaktight RPV
 - · Open reactor head
- Spent fuel pool accidents

List of Examples - Background

- Participant in SARNET and SARNET-II projects (recently in NUGENIA)
 - WP5, WP6, WP7 and contribution to WP8.3 benchmark of SARNET-II
- Participant in OECD Projects and activities (ISP, CAPS)
 - THAI, THAI2, STEM, MCCI, MCCI2, SFP, OLHF, RASPLAV, MASCA and others
- Many contributions to CSARP/MCAP meetings, NURETH, NUTHOS or other conferences
- JRC Petten organized benchmark on IVR strategy for VVER-1000/320
 - MELCOR calculations of whole plant response (2013-2014)
- Analytical support of PAR Layout for Temelin NPP
 - Subcontractor of Westinghouse Electric Germany (2013-2014)
- Validation of SAMGs for Temelin NPP
 - Set of projects in period of 2005-2012
 - To be updated in upcoming period after implementation of post-Fukushima measures
- Strategies for long containment integrity control at Temelin NPP
 - Project for utility in period 2013-2014
 - Corium stabilization and containment condition control issues
- Analyses of severe accident progression initiated in SFP at Temelin NPP
 - Project for utility in period 2012-2013
- Identification of conditions for entry to SAMG in shutdown modes or for SA in SFP
 - Initiating phase for methodology development and first set of cases analyzed in 2014
 - Objective to correlate dose rate in location of measurement to core degradation progression and "core exit" temperature

Background

Research Needs - Phenomenology

- Application to NPP SAM Program
- Specific Needs from SAM Application at Czech NPPs
- Conclusions

Research Needs - Phenomenology

Identification of research priorities and their ranking

NUGENIA - Technical Area 2: Severe Accident

Roadmap prepared based on conclusions of SARNET2 SARP http://s538600174.onlinehome.fr/nugenia/nugenia-roadmap-released-and-available-online/

- Seven technical sub-areas
 - In-vessel corium/debris coolability

SARNET-2 project - SARP group

2013, Avignon, October 2-4, 2013

Ex-vessel corium interactions and coolability Containment behavior, including hydrogen explosion risk

Updated revision with impact of Fukushima Daiichi event

- Source term
- Impact of severe accidents on environment
- Severe accident scenarios
- Emergency preparedness and response

Research Needs - Phenomenology

Technical Sub-Areas of TA2: Severe Accident

- In-vessel corium/debris coolability
 - Debris bed refooding, PEARL experiments, IVR strategy (corium, CHF)
- Ex-vessel corium interactions and coolability
 - Stratified steam explosion, corium coolability during MCCI
- Containment behavior, including hydrogen explosion risk
 - Atm. mixing, impact of mitigation measures PAR
- Source term
 - Filtered venting, FP release, transport and retention (chemistry of FP)
- Impact of severe accidents on environment
 - Atmospheric dispersion models
- Severe accident scenarios
 - Development of ASTEC code, evaluation of SAM measures, extensive validation
- Emergency preparedness and response
 - Fast running tool on source term evaluation

Background

- Research Needs Phenomenology
- Application to NPP SAM Program
- Specific Needs from SAM Application at Czech NPPs
- Conclusions

Applications to NPP SAM Program

Transfer of existing knowledge in SA phenomenology to plant applications is limited

- Knowledge gaps
- Assumptions in experimental research
- Assumptions in code developments
- Application of recent knowledge (data, computer codes) to SAM development identified extensive set of needs in various areas
 - Material properties
 - Reduction of loads
 - Reduction of uncertainties
 - Computer codes limitations
 - Design specific solutions

Applications to NPP SAM Program Material Properties

Key feature of event progression into severe accident is fuel overheating

- Many SA phenomena are related with very high temperature and radioactive conditions ⇒ determination of
 - Conditions of experimental research (non-irradiated vs. irradiated samples)
 - Limitations of experimental conditions (temperature limits)
 - Measurement capabilities
 - Expenses of research activities
- Recent material property DB covers practically all basic materials, but
 - Only generic (or one representative) material is usually known
 - Industry does not open data to research community
 - Corium properties implementation of newly applied material (ATF ...)
 - More complex compositions usually binary and ternary phase diagrams exist

Applications to NPP SAM Program Material Properties

Only generic (or one representative) material is usually known

- Cladding oxidation
 - Extensive research done for Zry-4
 - KIT Karlsruhe significantly contributed in closure of this gap, but limited access to material samples and always delay in comparison with industry
- Creep conditions of lower head
 - Full temperature range only for US steel SA533B1, but for carbon steel at VVER reactor data available only below 1000 K
- Material interactions
 - Corium to lower head interaction
 - ISTC Projects METCOR and THOMAS (M.Veschunov et al.: Preliminary results of ISTC Project #3876 (THOMAS) (<u>Thermal Hydraulics of</u> <u>O</u>xidizing <u>Melt in Severe</u> (⇔) <u>A</u>ccidents) on physico-chemical interactions of molten corium with vessel walls under oxidizing conditions, 17th International QUENCH Workshop, Karlsruhe Institute of Technology, November 22-24, 2011)
 - Impact of corium convection, heat flux on steel oxidation

Applications to NPP SAM Program Reduction of loads

Some SA phenomena results forming of risk conditions

- Cladding oxidation resulting in hydrogen generation \Rightarrow risk of H₂ deflagration or detonation \Rightarrow threat of containment integrity
- MCCI results in non-condensable generation $(H_2, CO, CO_2) \Rightarrow$ overpressurization of containment \Rightarrow threat of containment integrity
- HPME results in DCH ⇒ heat-up and pressurization of containment atmosphere ⇒ threat of containment integrity
- Melt relocation into water pool ⇒ risk of steam explosion ⇒ threat of containment integrity
- Many of risks are eliminated or significantly reduced within various SAM strategies
 - Primary circuit depressurization ⇒ elimination of HPME with DCH
 - Cntn pressure reduction with filtered venting of containment
 - Slow-down of MCCI with reflooding of corium
 - Hydrogen removal system PAR or igniters or their combination

Applications to NPP SAM Program Reduction of loads

Can we reduce some other load with new approaches?

- Development of new cladding materials (advanced cladding materials or accident tolerant fuel) is focused on elimination of hydrogen generation
 - Specific surface coating or application of new materials
- Generic question
 - Is hydrogen the most serious SA threat for NPPs, if they implemented hydrogen removal system dedicated to SA conditions? Not
 - The most limiting phase, concerning H_2 issue, is very intensive generation during early phase of core degradation due to
 - Significant impact of positive feed back of exothermic oxidation of Zr based materials
- Application of new cladding materials has eliminate intensive heat generation during oxidation (exothermic reaction), rather than hydrogen production, because
 - Endothermic or energetically neutral oxidation (even with H2 generation) will result in lower generated hydrogen mass rate due to absence of positive feedback
 - Impact of hydrogen in containment is solved for higher hydrogen sources

Applications to NPP SAM Program Reduction of uncertainties

- Uncertainties in knowledge of SA phenomena exist, their ranges varying from percent to hundreds of percent case by case
- Reduction of uncertainties depends on continuation of experimental programs to fulfill gaps in knowledge or various initial and boundary conditions – Examples
 - Nitriding of cladding during core degradation in air atmosphere

 - In case of consequent inlet of oxidizing atmosphere, nitrides are re-oxidized with very fast kinetics and exothermic reaction
 - MCCI corium as well as concrete compositions strongly influence ablation and coolability
 - Experiments performed for limited number of concrete compositions
 - Siliceous concrete anisotropic ablation, low intensity of melt eruptions
 - Limestone concrete isotropic ablation, high intensity of melt eruptions
 - Steam explosion
 - Triggering conditions are very uncertain

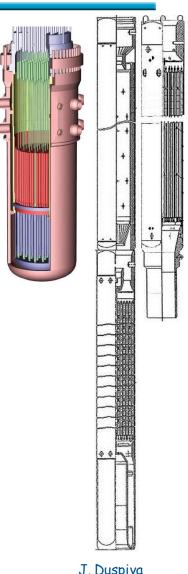
Applications to NPP SAM Program Computer codes

Uncertainties in knowledge penetrate to computer code

- Code development is always delayed to experimental knowledge
 - Order of research activities experimental investigation, collection of experimental data, evaluation of data with development of model, its verification and validation, implementation into system code, validation, and application
- Three main contributors on side of computer code
 - Physical correlations
 - Governing equations
 - Nodalization

New areas for computer code development

- Multi-unit accident only one "core" in existing codes
 - Simultaneous accident of reactor and in SFP
- Q? Is it possible to modify recent SA codes?


Additional effects contribute to overall uncertainty of analytical results

- User effect
 - Knowledge of phenomenology
 - Knowledge of code models and their assumptions
 - User experience in model development (influenced by validation on experiments)
 - Experience sharing within team or among members of user community and with developers
 - QA procedures
 - Detailed analysis and interpretation of results
- Model assumptions vs. plant design specificity
 - LWR standard core design vs. VVER-440 core with control assemblies

Is it really user effect? 2 + 2 = 5Emilio Baglietto, NURETH-10, Dec 2014

Applications to NPP SAM Program Computer codes

Background

- Research Needs Phenomenology
- Application to NPP SAM Program
- Specific Needs from SAM Application at Czech NPPs
- Conclusions

SAM Application at Czech NPPs Measures Applied or under Preparation

- Several measures applied with aim to prevent accident progression into SA
 - Mobile power and water sources (equipment and measurement)
 - Diverse equipment (SBO DG, SG-RCS-SFP water supply)
 - Communication equipment, radiation monitoring
- Mitigation measures for SA conditions
 - PAR
 - In-vessel retention
 - Molten corium localization
 - Long term containment heat removal
- Preparation identified some weak points

SAM Application at Czech NPPs In-Vessel Retention Strategy

- Application of IVR strategy to VVER-1000 is under investigation
 - Application to VVER-440/213 decided in CR, Hu, SR, and also in RF
- Several areas of high uncertainty identified
 - Corium composition
 - Corium configuration ⇒ heat flux density distribution along RPV
 - Coolant supply into cavity (initial reflooding and long term water supply)
 - Cooling conditions (CHF profile for specific geometry and flow conditions)
 - Residual risks
 - Feasibility and acceptability of proposed solution

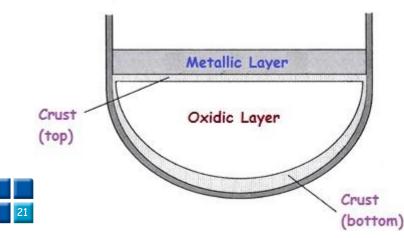
Many activities initiated

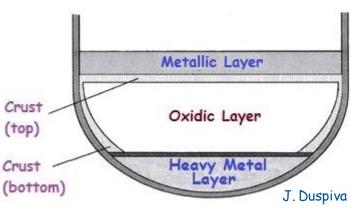
- IVR workshop in collaboration with IAEA (July 2013)
- Benchmark on analytical evaluation of heat flux to RPV (coordinated by JRC IET Petten, 11-2013 to 11-2014)
- Experimental investigation of coolant impact on surface and surface coolability
- EC H2020 September 2014 call IVMR Project (labeled by NUGENIA)

SAM Application at Czech NPPs IVR - Corium Composition

- Strategy has cover all accident scenarios only limited cases calculated
- Experimental program (RASPLAV, MASCA, MASCA2) used only few examples of corium composition (based on oxidation ratio of Zr)
 - Compositions with 100%, 70% and 30% of Zr oxidized
- MELCOR simulation of LB LOCA with loss of all active ECCs for VVER-1000/320 identified oxidation ratio only 20.5 % Zr oxidized
 - Historically, the oxidation ratio was understood as part of cladding oxidized, but for SA, and corium composition specifically, total mass of Zr in core has to be evaluated

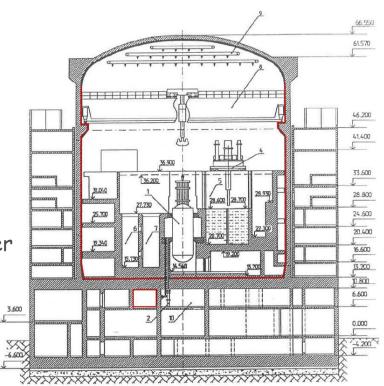
Research needs - more detailed matrix of corium compositions


- More cases in range for lower oxidation ratio, no data for the highest
 - case with 100 % of Zr oxidized is theoretical only and can be reached in very specific condition they don't lead to corium formation - Cleaning Tank Accident (Hungary)



SAM Application at Czech NPPs IVR - Corium Configuration

- Decision on applicability of IVR strategy is strongly influenced by interpretation of OECD/MASCA2 project results
 - Some countries conclude formation of three layer configuration ⇒ thinner upper metallic layer ⇒ intensification of focusing effect (higher maxima of heat flux density in profile)
 - Some countries argue that no formation of lower heavy metal layer occurred
 - Only formation of some local particals with reduced uranium observed experiment terminated too early for final conclusion on formation of layer continuation in such tests is necessary
- Impact of core degradation process and corium/debris relocation on melt pool formation
 - Water in lower head ⇒ cooling and refreezing of relocating debris ⇒ re-melting

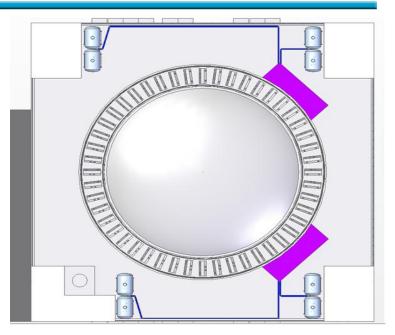

SAM Application at Czech NPPs IVR - Coolant Supply

VVER-1000/320 specific design of containment

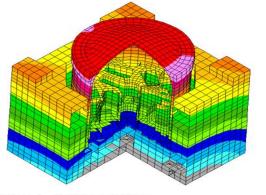
- Non-hermetic room below Cntn base mat
- Drainage of water in containment redirected to recirculation sump below Cntn base mat
 - Passive water drainage to cavity impossible active system for long term water supply necessary

Alternative water injection for initial fast cavity reflooding investigated

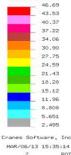
- Tanks on roof with sufficient amount of water for initial filling of cavity
 - Seismic study on feasibility performed
- Remaining issues
 - Analysis of injection under typical SA conditions in containment (pressure in Cntn)
 - Pipeline design
 availability of penetration
 of Cntn wall and cavity, but also timing and cavity volume determine final solution



SAM Application at Czech NPPs IVR - Coolant Supply



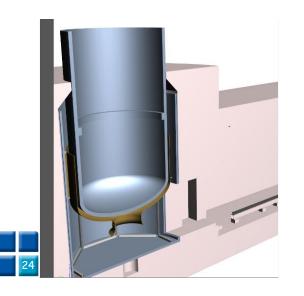
- VVER-1000/320 Containment and auxiliary building
 - Location of tanks

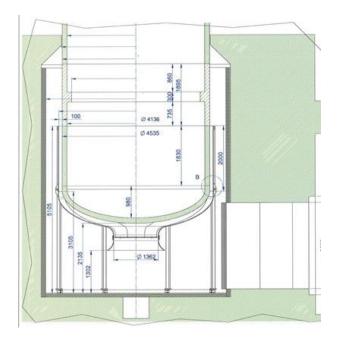


DISPLAY III - GEOMETRY MODELING SYSTEM (17.1.0) PRE/POST MODULE

RESULTANT DISPL MIDDLE LAYER VIEW : 0.0002495 NGE: 0.004668

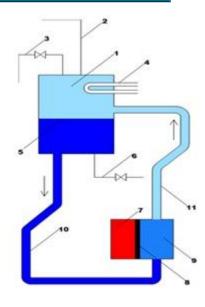
OE-4


MODE NO. = 1 FREQUENCY = 2,68223E+00 Hz NISA VLASTNI TVARY HVB JETE, PERA - PUVODNI


SAM Application at Czech NPPs IVR - Cooling conditions

- Design of VVER-1000/320 cavity doesn't enable natural circulation of coolant like other containment (AP-1000)
 - Coolant convection strongly influence CHF
 - Elliptical bottom head of VVER-1000 RPV
- Feasibility study on installation of deflector performed
- Initiating analysis on impact of deflector performed
 - RELAP5-3D code for evaluation of impact of channel size and deflector height
 - Flow through or circulation loop in cavity

SAM Application at Czech NPPs IVR - Benchmark


- UJV initiated and JRC IET Petten coordinated benchmark on "In Vessel Retention on VVER1000"
 - Many contributors from JRC, KI, IRSN, IRNRE, IVS, VTT, CEA and others
 - Goal of benchmark
 - Estimation of heat flux profile from corium to RPV wall
 - Analytical approaches
 - Integral whole scenario simulation KI (SOCRAT), IVS (ASTEC) and UJV (MELCOR)
 - Stand alone corium behaviour in lower plenum mostly ASTEC, but also for example PROCOR (CEA)
- Final report under preparation to be released soon
 - Very high scatter of results (maximum HFD from 800 kW/m² to
 - ~ 2 MW/m^2 with extreme value of 6 MW/m^2)
 - Not only among different codes, but also among users of same code with identical base part of input for stand-alone simulation
 - Huge effort in code development and definition of best practice foreseen

J. Duspiva

SAM Application at Czech NPPs IVR - UJV Experiments

- Extensive experimental investigation is ongoing in UJV (BESTH2 facility)
- Experimental program covers several topics
 - Chemical processes on surface of specimen
 - Corrosion
 - Formation of boric acid crystals on surface
 - Natural convection formation
 - Impact of surface conditions on heat transfer
 - Polished, corroded, coating (High Velocity Particle Coating "cold spray" technology - collaboration with PSU)
 - Impact of surface declination
- Facility improvement
 - Increase of maximum heat flux densities
 - Recently only 0.8 MW/m², first upgrade to 1.2 MW/m², and target value about 2 MW/m² - conditions of CHF
- Experience will be used for large experiment (scale 1:1) for confirmation of vessel coolability

SAM Application at Czech NPPs In-Vessel Retention Strategy

Residual risks – foreseen activities

- Evaluation of impact of partly flooded cavity or RPV lower head failure during strategy application - melt ejection into water
 - Risk of steam explosion
 - Cavity and containment loads

Feasibility and acceptability of proposed solution

- Many steps and effort have to be done before final confirmation of feasibility of IVR strategy application to VVER-1000/320
 - Confirmation that all configuration are coolable and with sufficient margin
 - Such margin has to be defined with the community of research, utility and authority personal
- Acceptability of solution based on active system
 - Dedicated to SA mitigation only
 - Unique design solution different to standard ECCs

<u>Philosophical question</u> ? is more safe NPP with new SA dedicated mitigation system than with new SA preventive system, if both are active, but different design solution than existing ECCs ?

SAM Application at Czech NPPs Ex-Vessel Corium Stabilization

Concrete walls

Spreading area

GA303

CAV02

GA302

GA308

GA310

16-301 02

- Optional solution to IVR strategy for VVER-1000/320
- First idea on corium spreading and cooling with top flooding from 90'
 - Analyses confirmed positive effect on reduction of concrete ablation
 - Open issue is corium fully coolable?
- OECD MCCI and MCCI2 project
 - Identification of potentiality for MCCI termination due to top cooling, but
 - Much higher for common sand/limestone than siliceous concrete
 - Extensive validation on CCI tests
 - CORQUENCH and ASTEC/MEDICIS against experimental values
 - MELCOR/CORCON code to code comparison approach
- Plant applications (siliceous concrete)
 - Some analyses identified potentiality of MCCI termination, but
 - General conclusion MCCI is not possible terminate, if concrete ablation already initiated
 - Recent approach application of refractory material to prevent MCCI for time needed to cool down corium after spreading
 - Further research mainly on optimization of refractory material is foreseen as well as on spreading of corium (dry, under water)^{GA308}

Background

- Research Needs Phenomenology
- Application to NPP SAM Program
- Specific Needs from SAM Application at Czech NPPs
- Conclusions

Conclusions

- Many needs of research activities in Severe Accident phenomenology exist
 - Basic phenomenology closure of gaps and uncertainty reduction
 - Plant application design specific features, material issues
- Possible rule of IAEA (can't play a rule of sponsor)
 - Coordination/Initiation of some research activities (jointly with OECD/NEA)
 - Organization of benchmark (parallel to or jointly with OECD/NEA)
 - Support in knowledge transfer (research to utilities and authorities) – workshops, training courses etc.
 - Implementation of new practices into legislation

Thank You for Your Attention

UJV GROUP

