
© Hitachi, Ltd. 2015. All rights reserved. 

Development of Inherently Safe Technologies 
for BWRs 

Hitachi Ltd., Hitachi Research Laboratory 

Feb. 17, 2015 

Kazuaki Kitou, Naoyuki Ishida, Akinori Tamura, 
Ryou Ishibashi, Masaki Kanada and Mamoru Kamoshida 

IEM-8 IAEA-CN-235-10 

Feb. 16-20, 2015,  Vienna, Austria 



© Hitachi, Ltd. 2015. All rights reserved. 

1. Background and objective 

2. Overview of the development items 

3. Conclusions 

Contents 

1 



© Hitachi, Ltd. 2015. All rights reserved. 

1. Background and objective 
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1-1  Safety improvement trends in BWRs 

3 

 Core damage frequencies have been reduced by adding or 
improving safety systems, considering past accidents. 

 Countermeasures for large-scale natural disasters have 
become necessary, considering the Fukushima event. 

Ref: GE Hitachi Nuclear Energy, "Safety, constructability, and operational performance of the ABWR and  

   ESBWR designs", IAEA Technical Meeting on Technology Assessment for Embarking Countries (2013) 
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1-2  Fukushima event sequence and development needs 
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Tsunami & 
station blackout (SBO) 

Cooling system 
stop 

Hydrogen explosion 

Core melt 

Primary containment 
vessel failure 

 Development needs were selected considering  
 the Fukushima event sequence. 
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1-3  Objective and development items in the study 
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Objective: 
    Ensure plant safety even under a long-term station blackout 

or multiple failures caused by a large-scale natural disaster 
 Development items regarding our innovative cooling system 

are mainly reported in this presentation. 

Innovative cooling system 

Hydrogen explosion prevention system 

IC: Isolation Condenser 
PCCS: Passive Containment Cooling System 
PAR: Passive Autocatalytic Recombiner 
PCV:   Primary Containment Vessel 
RCIC: Reactor Core Isolation Cooling 
RPV: Reactor Pressure Vessel 

Abbreviations 
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Heat 
exchanger 

1-4  New passive water-cooling system 

 Conventional passive water-cooling systems need a large 
water pool at a high elevation above the RPV. 

 The system is devised to improve the seismic design of the 
water-cooling system. 

New passive water-cooling system 

Features of the new system 

• The water pool can be located 
below the ground level. 

• Steam generated in the RPV flows 
by the pressure difference between 
the RPV and the suppression pool. 

• Water is supplied to the RPV using 
turbine driven system (RCIC) or an 
alternative feedwater system  

Steam 
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Water 
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Alternative 
feedwater system 

JP Patent No. P05566963 
EPO Patent No. 2549484 
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2. Overview of the development items 
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2-1  Innovative cooling system 
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 Heat transfer data were obtained to design the water-cooling 
systems, such as IC, PCCS and our new system, using a full-
scale single-tube test section. 

 Multiple-tube tests are also being conducted now. 

2-2  Heat transfer tests for water-cooling systems 
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 The completed condensation length map has been made 
based on test results[1]. 

 Modified heat transfer correlations have been developed [2]. 

2-3  Test results for water-cooling systems 

Completed condensation length map[1] 

TC1 
0.1m 

TC2 
1.7m 
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9.3m 

The mark means condensation  
completed between TC3 and TC4. 

Developed heat transfer correlation[2] 

[1] N. Ishida et al., ICONE22-31007 (2014) 
[2] H. Hosoi et al., NUTHOS10-1191 (2014) 
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2-4  Development items for air-cooling system 
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 Air-cooling enhancement technologies are key to realize the air 
cooling system. 

 Better heat exchanger pipe has been developed. 
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2-5  Heat transfer tests for air-cooling system 
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 Heat transfer tests were conducted to confirm heat transfer 
and pressure loss characteristics of the developed technologies. 
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2-6  Test results for air-cooling system 
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 Nu was increased 140% using the technologies[3]. 
 Pressure loss also increased 70% due to the fins and the ribs. 

Nusselt number Pressure loss coefficient 

[3] N. Ishida et al., “The concept of passive cooling systems for inherently safe BWRs”, ICMST-Kobe (2014) 
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2-7  Air-cooling performance in a plant 

14 

 The air-cooling performance was estimated using 1D analysis. 
 Heat transfer performance increased 100%[3]. 
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2-8  Hydrogen explosion prevention system 

15 

 Hydrogen explosion prevention system consists of using high 
temperature resistant (SiC) fuel cladding and PARs*. 

 High temperature oxidation tests for SiC were conducted, and 
estimated H2 generation using SiC fuel in a plant decreased to 
one-fifth or less than that using conventional zircaloy fuel[4]. 

*PAR：Passive Autocatalytic 
         Recombiner 

Reactor building 

RPV 

High temperature resistant fuel 

PCV 
Nitrogen  

filling 

Leaked  hydrogen 

Leaked hydrogen gas is 
recombined by PARs* 

[4] R. Ishibashi et al., ICONE22-31139 (2014) 

Fuel assembly

Lower hydrogen generation rate 
under high temperature 

conditions during severe accident

Fuel cladding

1) Inner layer:

Metal or alloy

3) Outer layer:

Environment barrier coat

2) Substrate:

SiC/SiC composite



© Hitachi, Ltd. 2015. All rights reserved. 

2-9  Operation support system 

16 

■ The system covers multiple equipment failures, and it has 
three functions to reduce the occurrence of operators’ false 
recognitions and human errors. 

■ An accident event identification method and a plant 
simulation code to predict event progress were developed[5]. 

Operation 
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Control panel 

Sensors 

Operation support 
system 

Operator 

Battery 

Main control room 

Support staff 

Technical 
support 
center 

①Sensor integrity diagnosis 

②Accident event identification 

③Progress prediction 

Process 
computer 

Functions 

[5] M. Kanada et al., ICONE22-31104 (2014) 
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3. Conclusions 
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3-1  Conclusions 
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 We have been developing the following inherently safe 
technologies for BWRs to improve plant safety during large-
scale natural disasters. 

 

 (1) Innovative cooling system 
 (2) Hydrogen explosion prevention system 
 (3) Operation support system 

 
 The development items and results for the innovative cooling 

system were summarized in this presentation. 
 

 - Heat transfer tests for both the water- and the air-cooling 
systems were conducted. 

 - Heat transfer data to design the water-cooling systems were 
obtained over a wide range of thermal hydraulics conditions. 

 - The air-cooling enhancement technologies have been developed 
to realize the air-cooling system. 
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