

EPRI Risk & Safety Management Program Research Priorities

Stuart Lewis

Sr. Program Manager Risk & Safety Management

International Experts Meeting on Research in Light of Fukushima 17 February 2015

RSM Research Priorities Derive from EPRI Mission

EPRI Mission

Advancing safe, reliable, affordable and environmentally responsible electricity for society through global collaboration, thought leadership and science & technology innovation

Risk & Safety Management Strategic Vision

Provide practical technology to help nuclear power plants to achieve safe, reliable operation

Safe

Electricit

geliable

Achieving the Risk & Safety Management Vision

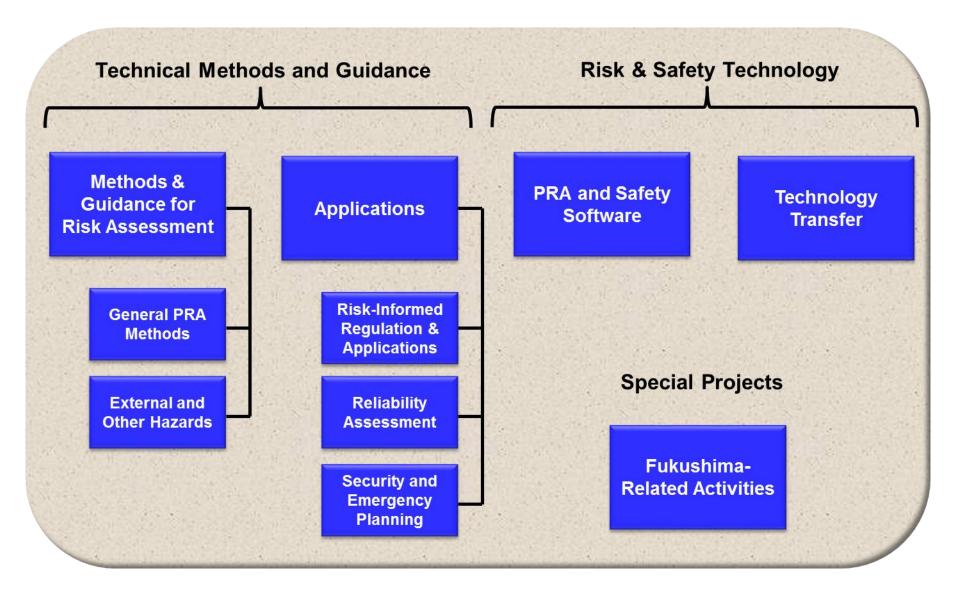
Risk & Safety Management Strategic Vision

Provide practical technology to help nuclear power plants to achieve safe, reliable operation

RSM Program Mission:

To equip members to implement a risk-informed framework to support

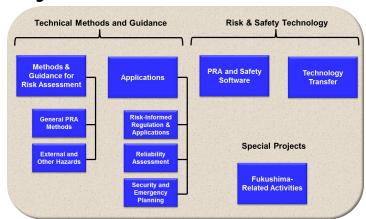
- Identifying cost-effective ways to improve safe operations, while also
- Enhancing operational flexibility


Mission achieved through

- Developing and improving technical methods and analysis tools
- Providing guidance for effective use of methods and tools

Electricity

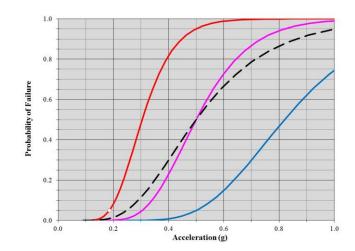
Organization of RSM Research Areas

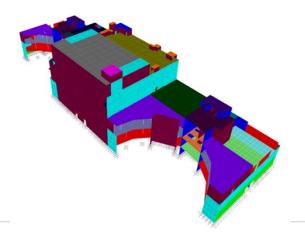


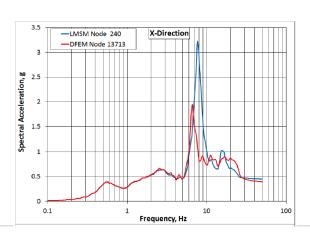
Objectives for Long-Term Research in RSM

- Enhance ability to understand risks for more effective decision-making
- Enhance risk analysis process to
 - Provide greater efficiency for timely probabilistic risk assessments (PRAs) and applications
 - Facilitate ability to extract meaningful risk insights

Examples of relevant research priorities

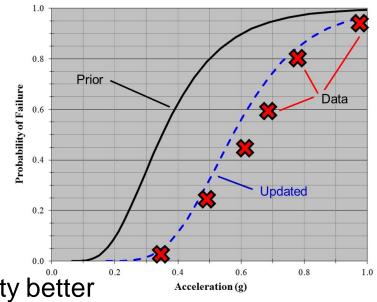

- Improvements in seismic fragility analysis
- Methods and guidance for risk assessment of external flooding
- Advances in *human reliability* analysis
- Advanced PRA software platform




Improvements in Seismic Fragility Analysis

- Fragility analysis captures likelihood of failure as a function of earthquake intensity
- Research underway to
 - Improve ability to model structural response

- Apply experiential data to inform fragility analysis
- Develop new approach to fragility assessment

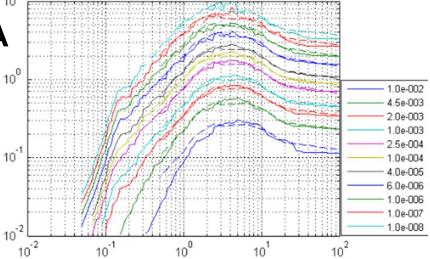


Using Data to Inform Fragility Assessment

- Examining earthquake experience database for representative equipment
 - Augmenting or reformulating methods for seismic capacities
 - Assessing whether alternate
 approaches exist to characterize fragility better

 Initial results from pilot study: consistent increases in assessed median capacity

- Mining data from extensive qualification testing
- New testing of components for sensitivity to high-frequency motions



Scenario Earthquake Approach to Fragility Analysis

New approach for seismic PRA

Concept

 Use large number of earthquake time histories to characterize probabilistic ground motion

Eliminate reliance on uniform
 hazard spectra to connect hazard to fragility analysis

Objective

- Decrease uncertainty in seismic motions imputed to buildings and equipment
- Understand potential conservatisms in current seismic PRA methods

Promising technical approach – if complexity can be reduced

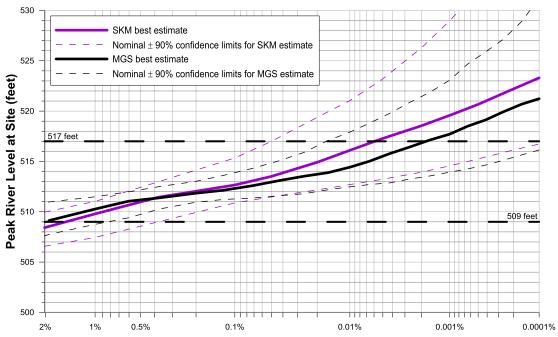
External Flooding Research

Overall research focus

- Better characterization of probabilistic flood hazard
- Improved understanding of potential impacts on plant (inundation, debris, dynamic forces)
- PRA modeling of plant response

Examples of research priorities

- ✓ Improvements in *seismic fragility analysis*
- Methods and guidance for risk assessment of external flooding
- Advances in human reliability analysis
- Advanced PRA software platform

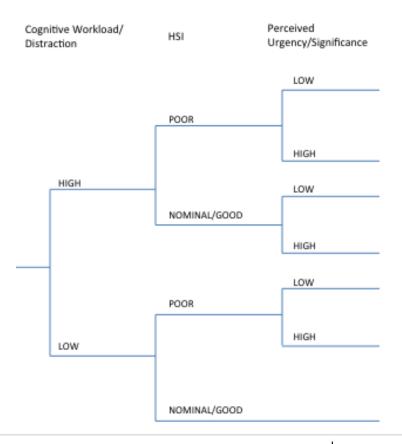


External Flooding Research (continued)

Recent and near-term activities

- Completed pilot studies:
 - Flooding of river site
 - Intense precipitation
- In progress:
 - Dam failure rates and mechanisms
 - Coastal flooding from storm surge
 - Human response to implement flood protection

Annual Exceedance Probability


Human Reliability Analysis

- Practical methods with strong basis from psychological literature
- Adapting/extending methods for
 - External hazards, starting with seismic and external flooding
 - Assessment of actions not covered by explicit procedures ("recovery")
 - Use of portable/flexible capabilities (e.g., FLEX in US)
 - Assessment of actions after onset of core damage (severe-accident management)

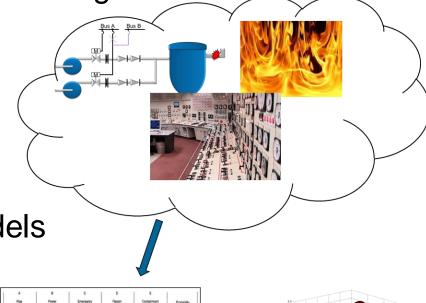
Examples of research priorities

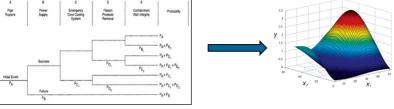
- ✓ Improvements in *seismic fragility analysis*
- Methods and guidance for risk assessment of external flooding
- Advances in human reliability analysis
- Advanced **PRA software platform**

Key Alarm Not Attended To

Advanced PRA Software

Phoenix: Meeting needs for

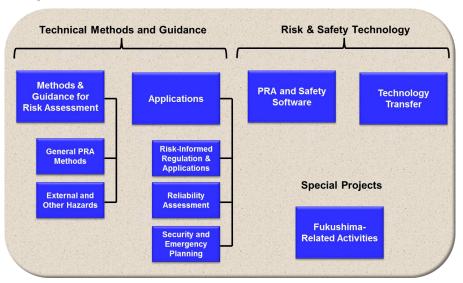

- Supporting increasing regulatory application of PRA
- Effective risk-informed decision-making
- Extending plant operating life
- New plants


Key Features of *Phoenix*

- More efficient ways to construct and evaluate risk models
- Better ways to visualize results

Examples of research priorities

- ✓ Improvements in *seismic fragility analysis*
- ✓ Methods and guidance for risk assessment of external flooding
- ✓ Advances in *human reliability analysis*
- Advanced PRA software platform



Summary

EPRI Risk & Safety research priorities address

- ✓ Common cause failures due to external and internal events
- √ Technologies to prevent/mitigate severe accidents
- √ Severe accident analysis
- ✓ Emergency preparedness and response
- ✓ Post-accident recovery

Together...Shaping the Future of Electricity