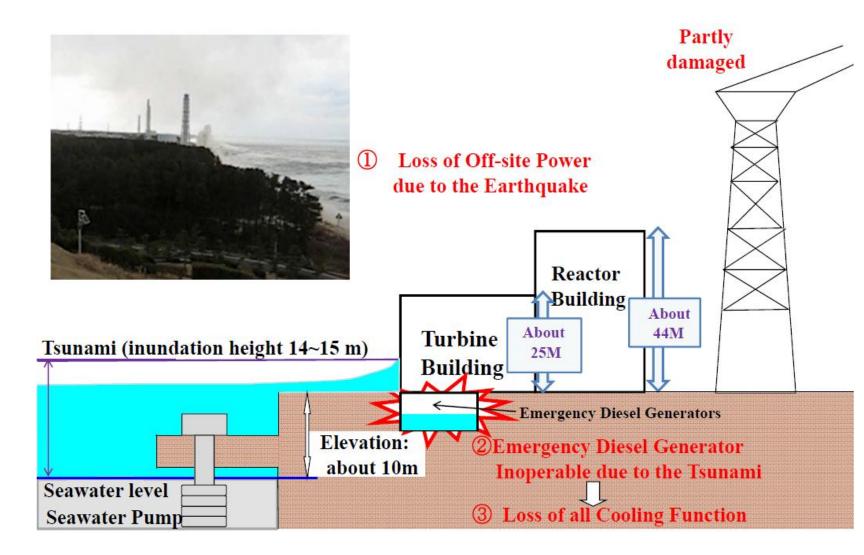


International Experts Meeting on Strengthening Research and Development Effectiveness in the Light of the Accident at the Fukushima Daiichi Nuclear Power Plant

16–20 February 2015 Vienna, Austria

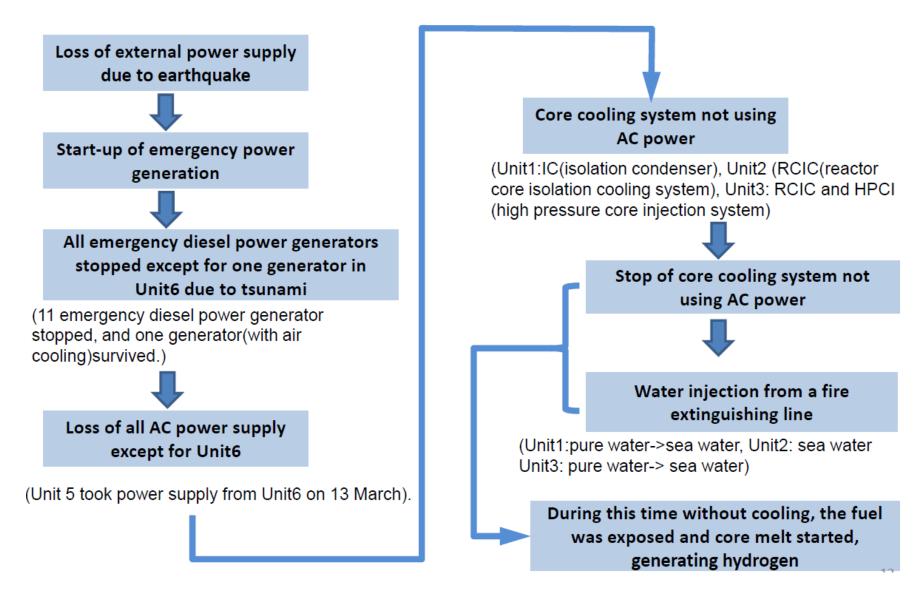
Post Fukushima R&D in the Framework of the European Union

G.E



Outline

- Post Fukushima R&D in the Framework of the European Union
- The Fukushima accident scenario and recovery actions
- **Historical Background**
- The SNETP Task Group on R&D
- Findings of the SNETP Fukushima Task Group
- Cross-cutting the Task Group Findings with NUGENIA's Topic Areas for R&D
- The NUGENIA Association and the SARNET network
- **Concluding remarks**



Causes of the accident and plant damages

Main accident sequence

Historical Background 1/4

Immediately after the Fukushima's events, several organisations issued reports on "Lessons Learned"

Among others, we mention:

- Japanese Government Reports
- TEPCO's and other Japanese Organisations' Documents
- NRC Task Force Report
- OECD NEA Documents
- SARNET ranking of priorities
- ...
- Key areas for further investigation identified in those and other documents included:
 - Nuclear system organization, safety infrastructure and safety culture
 - Assessment of risk from external events and prevention measures
 - Phenomenology, management and mitigation of severe accidents
 - Emergency preparedness and management

Historical Background 2/4

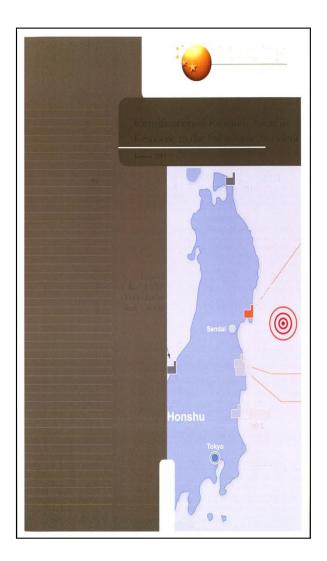
- Additional inputs were expected from the stress tests, related to three areas
 - Accidents initiated by natural events
 - Loss of electrical power and ultimate heat sink
 - Severe Accidents
- None of these documents explicitly addressed R&D topics and priorities (nevertheless, elements were provided by SARNET and TSO).

Historical Background 3/4

| To address R&D topics and priorities, the Governing Board of the SNETP - Sustainable Nuclear energy Technology Platform gathering in Rome on March 31 2011, settled a *Task Group*, the main duty of which was:

- Assessing the lessons learned from the accident,
- Assessing the results of the 'stress tests',
- Assessing their implications on R&D needs and priorities, established by the SNETP SRA 2009, for GEN II / GEN III, as well as on other components of the Platform,
- Making proposals to SNETP (and possibly in turn, by the Board to the European Commission).

It was clearly stated that the **Task Group's** activity should focus on R&D


Historical Background 4/4

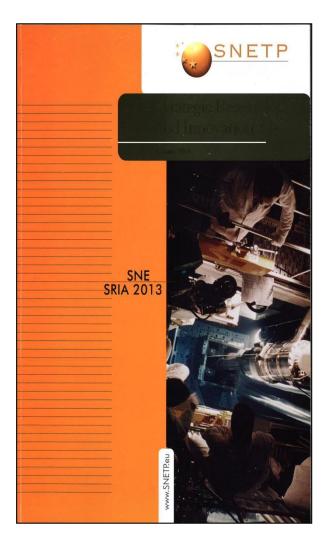
- The following Organizations participated in the *Task Group* which was coordinated by Jozef Misak from UJV Rez :
 AMEC, ENEL, EON, IRSN, JRC Petten, NRI Rez, SCK/CEN
- The Group started working in April 2011 with a survey of all the available information.
- Preliminary conclusions were issued in spring 2012
- They have been revised and complemented to include the outcome from the European Stress-Tests
- The Report this presentation widely relies upon was eventually issued January 2013, after SNETP EXCOM's approval.

SNETP Report on R&D Priorities

Identification of Research Areas in Response to the Fukushima Accident

SNETP January 2013

Report Of the SNETP Fukushima Task Group


Findings of the SNETP Fukushima Task Group 1/4

- 13 Research Topics were established, gathering relevant issues into homogenous fields of endeavour
- None of these Research Topics identified a fully new area for research, but several topics in the SRA 2009 appeared to be worthy for higher R&D priority \implies SRIA 2013 (Strategic Research and Innovation Agenda) issued February 2013
- Strong harmonization needs were identified from basic research to applied and pre-normative research -

SNETP SRIA 2013

The SNETP SRIA 2013

Strategic Research & Innovation Agenda

SNETP, May 2013

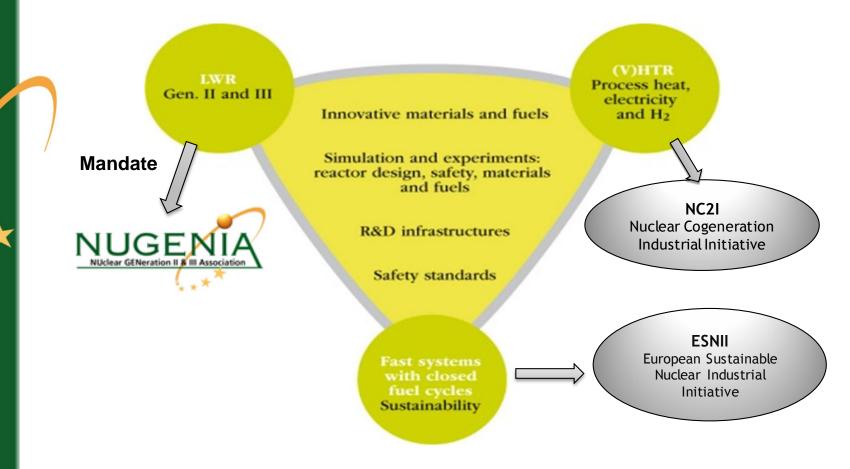
SNETP SUSTAINABLE NUCLEAR ENERGY TECHNOLOGY PLATFORM Findings of the SNETP Fukushima Task Group 2/4

Nuclear system organization,	 Systematic assessment of vulnerabilities to defence-in-depth
safety infrastructure and	and safety margins for beyond design basis loads Human/organizational factors under high stress and harmful
safety culture	conditions
Assessment of risk from external events and prevention measures	 Improved methods for external event hazard evaluation Use of the probabilistic methods to assess plant safety in relation to extreme events Advanced deterministic methods to assess plant safety in relation to extreme events Advanced safety systems for nuclear power plants

SNETP SUSTAINABLE NUCLEAR ENERGY TECHNOLOGY PLATFORM	he SNETP Fukushima <i>Task Group</i> 3/4
Phenomenology, management	7. Advanced materials for nuclear power
and mitigation of severe accidents	8. Advanced methods for the analysis of severe accidents
	9. Improved procedures for management of severe accidents
	10. Assessment of the radiological effects of the severe accidents
	11. Improved modelling of fuel degradation in the spent fuel pool
Emergency preparedness and	
management	surroundings and for treatment of large volume of radioactive waste
	13. Accident management in the framework of the integrated
	rescue system

- Not only technical issues, but also organizational and societal ones were addressed
- Implementation was judged very important: it was claimed that attention should be devoted on how the research outcomes profits to the design and operation transfer to industrial practice
- For Gen II/III, implications on R&D topics were drafted through cross-cutting the **13** identified Research Topics with the 8 NUGENIA's Technical Areas

Cross-cutting the Task Group Findings with NUGENIA's Technical Areas for R&D


	Material behaviur during SA	Advanced methods for the analysis of SA	Improved procedures for management of SA	Assessment of the radiological effects of the SA	Improved modeling of fuel degradation in the spent fuel pool	Methods for minimization of contamination.	Accident management in the framework of the integrated rescue system
Plant safety & risk assessment	* *	*	*	*	*		*
Severe accidents	*	**	**	**	*		*
Core & reactor operation			*	*	*		*
Integrity assessment & ageing of SSCs	**						
Fuel development, waste & spent fuel management & decommissioning	**				**	*	
Innovative Gen III design	*						
Harmonization							*
Inspection and Qualification	*		*				*

IKSN

NUGENIA within SNETP

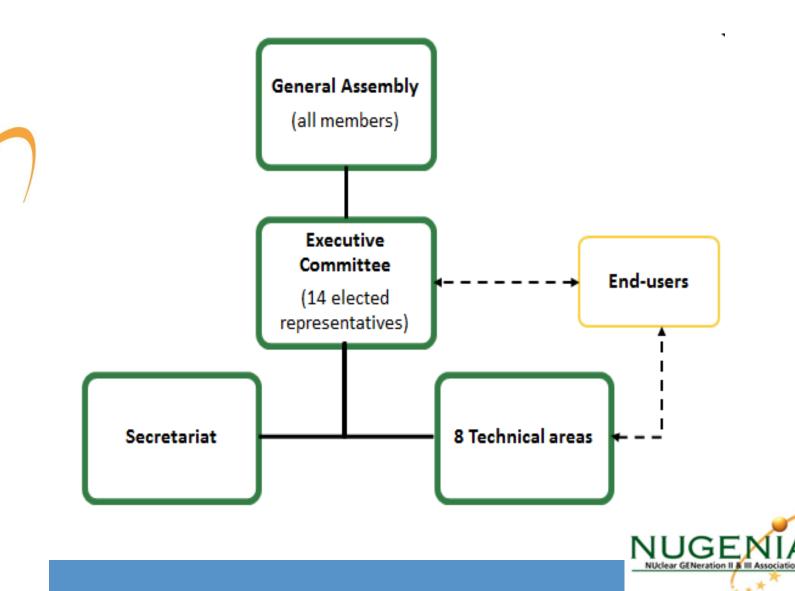
NUGENIA in short

- International non-profit
 Association of Belgian law
 founded in November 2011 and
 officially launched in Brussels,
 March 2012
 - R&D on fission technology, mainly GEN II-III

- **Redaction of** *Roadmaps*
- Contribution to SNETP SRIA
- Elaboration of R&D projects (Portfolio, Platform Innovation)
- Annual GA and Forum
- Strong support to harmonization of practices, codes and standards
- Dissemination of knowledge

NUGENIA: 8 Technical Areas for R&D

- 1 Safety and Risk of NPPs
- 2 Severe Accidents
- 3 Core and Reactor Operation
- 4 Integrity Assessment of Systems, Structure and Components
- 5 Fuel Development, Waste and Spent Fuel Management and Decommissioning
- 6 Innovative LWR Design and Technology
- 7 Harmonisation
- 8 In-service Inspection and NDE (ENIQ)



SARnet

NUGENIA's Governance

NUGENIA's Management & Staff

President: Jean-Pierre West, EDF R&D (France)

Vice-President: Rauno Rintamaa, VTT (Finland)

Chairman of the ExCom: Steve Napier, NNL (UK)

Vice-Chairman of the ExCom: Sven Reese, E.ON (Germany)

Brussels, 21 March 2012

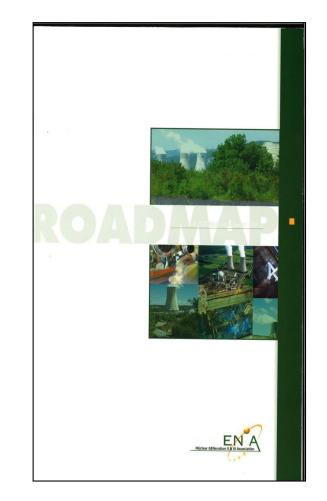
Jean-Pierre West and Frantisek Pazdera, Chairs of NUGENIA and SNETP respectively, sign the mandate between both organisations

NUGENIA's Roadmaps

Two Roadmaps:

-

-


- NUGENIA Roadmap Challenges and Priorities 2013, a summary document (≈ 60 pages)
 - April 2012: Decision of launching
 - July 2012: Editing (Objectives, Challenges, R&D Topics) for consultation
 - From September 2012: Contribution to SNETP SRIA
 - January 2013 : Publication of the SNETP report on Fukushima R&D Priorities
 - February 2013: Publication of the SNETP SRIA
 - **October 2013:** Publication and presentation at FISA Conference in Vilnius

- NUGENIA Roadmap Working Document,

- A detailed working document (≈ 400 pages)
- Launched first in 2012 then put on stand-by to implement the NUGENIA Roadmap – Challenges and Priorities – 2013
- Coordinated by G. Bruna, NUGENIA's current Technical Coordinator
- Under publication : issuance scheduled by March 2015
- To be presented at 4th NUGENIA Forum in Bled (SL), April 2015

NUGENIA Roadmap 2013

The

NUGENIA Roadmap - Challenges & Priorities - 2013

October 2013

SARNET network 1/3

The Severe Accident Research NETwork started in 2004 and was co-funded by EC in FP6-FP7 until 2013

- 24 countries (Europe, Canada, USA, Korea, India...)
- 47 organizations (TSO, research, industry, vendors, universities)
- 250 researchers and PhDs

⇒ Now integrated in NUGENIA and still coordinated by IRSN

A key task is the periodic ranking of R&D priorities:

 Latest update in 2013, accounting for the whole recent international R&D outcomes (FP7, OECD...) and for 1st analyses of the Fukushima accidents: directly used for the NUGENIA SRIA 2013

SARNET network 2/3

Main conclusions of the 2013 update:

- A few changes / 2008 ranking: the main highest priority issues remain open despite large progress in understanding,
 - In-vessel: corium configurations in vessel lower head and coolability by water injection in the vessel and flooding of the cavity,
 - Premixing phase of steam explosion and gas combustion in containment (deflagration/detonation, PAR efficiency...),
 - MCCI and corium coolability in the cavity,
 - Source term: trapping or filtration of I and Ru (FCVS, pool scrubbing),
 - Improvement of SA scenario codes
- In relation with Fukushima, some SA topics get higher relevance and a few "new issues" need to be addressed.

→ Most physical phenomena that occurred in Fukushima had already been considered in SARNET as high-priority for R&D.

SARNET network 3/3

Main impact of Fukushima on priorities:

Pay more attention to:

- Mitigation of consequences for inefficient SA prevention: H₂ explosion, melt debris coolability, containment venting/filtering...
- BWR modelling and experiments.

Increase efforts on the following issues:

- Behaviour of spent fuel pool scenarios,
- Instrumentation ad-hoc for SA diagnosis,
- Effect of water impurities (on core degradation, chemistry, FCI...),
- Pool scrubbing under boiling conditions.

Concluding remarks 1/2

The Fukushima's accident revealed no fully and completely new phenomena.

- Accordingly, the basic directions of the research programs, as defined in the key SNETP documents, such as the SRA 2009, were considered still valid.
- Nevertheless, a rearrangement of ranking and priorities among the research areas was estimated appropriate.
- The prioritization and ranking toward major R&D objectives has been made in the SRIA 2013, with a significant contribution from the SARNET network.

Concluding remarks 2/2

As stated in the SRIA 2013, the safety-oriented R&D is to become the actual driving force and engine for any future program of the nuclear research agenda. That is illustrated by EURATOM FP7 ongoing projects, such as ASAMPSA_E (PSA and external events), CESAM (on ASTEC code), PASSAM (on fission product mitigation).

NUGENIA endorses this founding statement to elaborate and structure fission R&D GEN II / III Roadmaps and promote R&D programs.

In this objective, NUGENIA allows gathering people and joining forces to address important topics and search for adequate, comprehensive an convenient solutions.

Thank you for your attention

