Influence of Fuel Design and Reactor Operation on Spent Fuel Management

International Conference on The Management of Spent Fuel from Nuclear Power Reactors

> 18 June 2015 Vienna, Austria

Man-Sung Yim Department of Nuclear & Quantum Engineering KAIST

Spent Fuel Management

Spent Fuel Functions

- Confinement/Containment
- Criticality Control
- Retrievability to facilitate safe retrieval of the fuel
- Maintain radiological dose within the prescribed safety envelope
- Decay heat removal

Basis: 45,000 MWd/t burn-up, ignores minor actinides

Reactor Irradiation (Example)

<u>Before</u>	After	Difference
33	7.9	-25.1
0	4	+4
967	942.9	-24.1
0	0.75	+0.75
0	0.2	+0.2
0	9.05	+9.05
0	35.1	+35.1
1000	999.1	0.1
	Before 33 0 967 0 0 0 0 0 0 1000	$\begin{array}{c c} \underline{Before} & \underline{After} \\ 33 & 7.9 \\ 0 & 4 \\ 967 & 942.9 \\ 0 & 0.75 \\ 0 & 0.2 \\ 0 & 9.05 \\ 0 & 35.1 \\ 1000 & 999.1 \\ \end{array}$

The radionuclides contained in spent fuel

- Fission products:
 - ⁹⁰Sr, ¹³⁷Cs, ³H, ¹²⁹I, ⁹⁹Tc, ⁹⁵Nb, ¹³³Xe, ¹⁴⁴Ce, ¹³⁵Cs, etc.
- Actinides:
 - ²³⁷Np, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, ²⁴¹Am, ²⁴³Am, ²⁴²Cm, ²⁴⁴Cm, etc.

(most of these are also activation products)

- Activation products:
 - ¹⁴N(n,p)¹⁴C, ¹⁷O(n,α)¹⁴C, ⁵⁹Co(n,γ)⁶⁰Co, ⁶²Ni(n,γ)⁶³Ni,
 ⁵⁴Fe(n,γ)⁵⁵Fe, etc.

The material balance

 $\frac{dX_{ij}}{dt} = \sum_{k=1}^{N_i} l_{k \to j} \lambda_k X_{ik} + \sum_{k=1}^{N_i} f_{k \to j} X_{ik} \int \sigma_k(E) \phi_i(E) dE - \lambda_j X_{ij} - X_{ij} \int \sigma_j(E) \phi_i(E) dE$ $i = 1, 2, \cdots, n; \quad j = 1, 2, \cdots, N_i$

where X_{ij} = atom number density of nuclide *j* in cell *i*,

 N_i = number of nuclides in cell *i*,

 $l_{k \to j}$ = fraction of radioactive disintegrations by *k* that lead to formation of *j*, λ_k = radioactive decay constant of nuclide *k*, $f_{k \to j}$ = fraction of neutron absorptions by *k* that lead to formation of nuclide *j*, $\phi_i(E)$ = spatial-average neutron energy spectrum in cell *i*, $\sigma_k(E)$ = neutron absorption cross section of nuclide *k*.

A. G. Croff, "ORIGEN2: A Versatile Computer Code for Calculating the Nuclide Compositions and Characteristics of Nuclear Materials," *Nuclear Technology*, **62**, 335-352, September 1983.

Key Radionuclides

- Decay Heat: Cs-137, Sr-90, Am-241, Cm-244, Pu-238
- Radiation Dose:
 - Gamma dose: Co-60, Cs-134, Cs-137/Ba-137m, Sr-90/Y-90, Eu-154, Ce-144/Pr-144, Rh-106
 - Neutron dose: Cm-244, Cm-246, Pu-238, Pu-240, Pu-242, Cm-245, Am-241
- Criticality: U, Pu, Am, Np
- Repository Dose: I-129, Tc-99, Np-237, Cs-135, Sn-126, Pu-239, Nb-94

Changes in Decay Heat in LWR Spent Fuel (Burnup @44 GWD/MTU)

Nuclear Properties of Fissile and Fertile Materials

lsotope	Half-life (y)	Neutrons/sec-kg	Watts/kg	Critical mass (kg) (bare sphere)	Comment
Pa-231	32.8x10 ³	Nil	1.3	162	
Th-232	14.1x10 ⁹	Nil	Nil	Infinite	
U-233	159x10 ³	1.23	0.281	16.4	
U-235	700x10 ⁶	0.364	6x10 ⁻⁵	47.9	
U-238	4.5x10 ⁹	0.11	8x10 ⁻⁶	Infinite	
Np-237	2.1x10 ⁶	0.139	0.021	59	
Pu-238	88	2.67x10 ⁶	560	10	Heat
Pu-239	24x10 ³	21.8	2.0	10.2	
Pu-240	6.54x10 ³	1.03x10 ⁶	7.0	36.8	Neutrons
Pu-241	14.7	49.3	6.4	12.9	
Pu-242	376x10 ³	1.73x10 ⁶	0.12	89	Neutrons
Am-241	433	1540	115	57	Heat
Am-243	7.38x10 ³	900	6.4	155	
Cm-244	18.1	11x10 ⁹	2.8x10 ³	28	Neutrons & Heat
Cm-245	8.5x10 ³	147x10 ³	5.7	13	
Cm-246	4.7x10 ³	9x10 ⁹	10	84	
Bk-247	1.4x10 ³	Nil	36	10	
Cf-251	898	Nil	56	9	

30%

Major Factors Affecting Nuclide Inventory

- Neutron spectrum
 - Fuel temperature
 - Moderator temperature
 - Moderator density
 - Hydrogen-to-heavy metal ratio
 - Lattice geometry
 - Soluble boron
 - Burnable poisons
- Operating history
 - Specific power
 - Power level variations
 - Load-following
 - Power uprating
 - Cycle length
 - Burnup
 - Recycling (Fuel cycle options)
- Cooling
 - Decay of fission products
 - Buildup of actinides

Neutron Spectrum Effects

- Fuel temperature
 - At higher fuel temperature, resonance absorption in ²³⁸U is increased due to Doppler broadening.
 - This results in spectral hardening and increased plutonium (e.g., Pu-239, Pu-241) production.
- Moderator temperature
 - As the moderator temperature increases, the moderator density decreases.
 - This leads into spectral hardening and increased plutonium production.
- Moderator density
 - Hydrogen-to-heavy metal ratio
 - Lattice geometry
- Soluble boron
 - Spectral hardening results from the absorption of thermal neutrons in the moderator by the soluble poison.
- Burnable poisons
 - Localized spectral hardening

Trends in k_{∞} with varying fuel temperature during depletion

Ave fuel		Infinite lattice neutron multiplication factor, k_{∞}										
temperature (K) GWd/MTU	3.0 wt % 10 GWd/MTU	3.0 wt % 30 GWd/MTU	3.0 wt % 50 GWd/MTU	4.5 wt %	4.5 wt % 10 GWd/MTU	4.5 wt % 30 GWd/MTU 50						
700	0.86070	0.72494	0.63645	1.00368	0.86387	0.74521						
800	0.86179	0.72848	0.64139	1.00421	0.86610	0.74940						
900	0.86282	0.73184	0.64626	1.00476	0.86832	0.75336						
1000	0.86383	0.73499	0.65094	1.00534	0.87034	0.75719						
1100	0.86471	0.73781	0.65515	1.00580	0.87224	0.76077						

M. D. DeHart, "Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages," ORNL/TM-12973, 1996.

Trends in k_{∞} with varying moderator temperature during depletion

		Infinite lattice neutron multiplication factor, k.											
Ave. moderator		30 wt % 30 wt % 30 wt % 45 wt % 45 wt %											
temperature	3.0 wt %	3.0 wt %	3.0 wt %	4.5 Wt %	4.5 Wt %	4.5 WL %							
(K)	10 GW0/M10	30 GWd/MTU	50 GW0/MTU	10 GWd/MTU	30 GW0/MTU	50 GW0/MTU							
500	0.84784	0.67865	0.56747	0.99761	0.83523	0.68731							
520	0.84977	0.68588	0.57757	0.99852	0.83964	0.69622							
540	0.85212	0.69457	0.59033	0.99967	0.84505	0.70729							
560	0.85506	0.70484	0.60561	1.00109	0.85155	0.72031							
580	0.85867	0.71706	0.62403	1.00276	0.85912	0.73539							
600	0.86282	0.73184	0.64626	1.00476	0.86832	0.75336							

M. D. DeHart, "Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages," ORNL/TM-12973, 1996.

Trends in k_{∞} with varying moderator temperature during depletion (4.5 wt % fuel).

KAIST

Designer	Pitch P	Rod Dia.	ia. Pellet Dia. Pellet Der		$V_{\rm M}/V_{\rm PIN}$	$V_{\rm M}/V_{\rm F}$	H/HM^{\dagger}
-	(cm)	D (cm)	d (cm)	ρ (g/cm ³)			
ABB Atom	L I						
16×16	1.435	1.075	0.911	10.50	1.27	1.77	3.56
17×17	1.26	0.95	0.819	10.50	1.24	1.67	3.36
18×18	1.275	0.95	0.805	10.50	1.29	1.80	3.63
ABB CENI	P						
14×14	1.47	1.118	0.968	10.5	1.20	1.60	3.23
16×16	1.29	0.970	0.826	10.5	1.25	1.73	3.48
BNFL/Wes	stinghouse						
17×17	1.26	0.914	0.784	10.5	1.42	1.93	3.89
European F	Fuel Group	(EFG)					
14×14	1.407	1.072	0.929	10.47	1.19	1.59	3.21
15×15	1.43	1.072	0.929	10.5	1.27	1.69	3.39
17×17	1.26	0.95	0.819	10.47	1.24	1.67	3.37
Framatome	Cogema F	fuels (FCF)					
15×15	1.434	1.06	0.918	10.52	1.33	1.77	3.57
17×17	1.26	0.95	0.819	10.52	1.24	1.67	3.35
Fragema							4
14×14	1.408	1.072	0.929	10.5	1.20	1.59	3.21 🛱
15×15	1.43	1.072	0.929	10.5	1.27	1.69	3.39
16×16	1.434	1.075	0.912	10.5	1.27	1.76	3.54
17×17	1.26	0.95	0.819	10.5	1.24	1.67	3.36
18×18	1.275	0.95	0.806	10.5	1.29	1.80	3.62
Korea Nucl	lear Fuels						
14×14	1.407	1.016	0.8748	10.43	1.44	1.94	3.94
16×16	1.29	0.97	0.826	10.46	1.25	1.73	3.49
17×17	1.26	0.95	0.8192	10.43	1.24	1.67	3.38
Mitsubishi							
14×14	1.407	1.072	0.929	10.41	1.19	1.59	3.23
15×15	1.43	1.072	0.929	10.41	1.27	1.69	3.42
17×17	1.26	0.95	0.819	10.41	1.24	1.67	3.39
VVER-100	0						
Hex	1.275	0.91	0.755*	10.5	1.16	1.89	3.80

[†] H/HM uses the estimated value of the H atom concentration at 300°C for a water density of 0.705 g/cm³.

* annular pellet, 0.24 cm diameter central hole.

** All dimensions are cold (room temperature): pitch increases by ~ 0.2% when hot.

*** After considering the presence of water-filled guide tubes and the gap between assemblies, the whole core H/HM value can be obtained through multiplying unit cell H/HM by \sim 1.16.

Hydrogen-Heavy Metal Ratio (H/HM) Variations in Different Fuel Designs

Initial *k*∞ as a function of H/HM ratio, 4.5% U-235 enrichment

Xu, Zhiwen, "Design Strategies for Optimizing High Burnup Fuel in Pressurized Water Reactors", MIT doctoral thesis, January 2003.

Effect of moderator boron concentrations on $k_{\rm \infty}$

	Infinite lattice neutron multiplication factor, k_{∞}										
Boron concentration (ppm)	3.0 wt % 10 GWd/MTU	3.0 wt % 30 GWd/MTU	3.0 wt % 50 GWd/MTU	4.5 wt % 10 GWd/MTU	4.5 wt % 30 GWd/MTU	4.5 wt % 50 GWd/MTU					
0	0.85904	0.71966	0.62853	1.00340	0.86233	0.74181					
100	0.85981	0.72215	0.63221	1.00367	0.86353	0.74424					
200	0.86055	0.72464	0.63583	1.00395	0.86475	0.74651					
300	0.86132	0.72696	0.63943	1.00421	0.86593	0.74894					
400	0.86212	0.72943	0.64295	1.00449	0.86705	0.75117					
500	0.86282	0.73184	0.64626	1.00476	0.86832	0.75336					
600	0.86359	0.73403	0.64971	1.00509	0.86941	0.75557					
700	0.86428	0.73622	0.65292	1.00536	0.87053	0.75773					
800	0.86503	0.73855	0.65608	1.00562	0.87163	0.75983					
900	0.86575	0.74069	0.65924	1.00588	0.87281	0.76235					
1000	0.86644	0.74282	0.66231	1.00615	0.87391	0.76446					

M. D. DeHart, "Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages," ORNL/TM-12973, 1996.

Trends in k_{∞} with varying boron concentration during depletion (4.5 wt % fuel).

Comparison of PWR, VVER, and CANDU

Operating History Effects

- Specific power
 - Power level
 - Changes in power level directly affect nuclide inventory.
 - Duration of down time between cycles or during the cycle has an impact.
 - Power uprating
 - Power uprating increase in depletion and radioactivity buildup.
 - Axial variations in flux
 - Axial variations in flux result in a non-uniform burnup distribution along the axial length of SNF.
 - Load-following
 - Axial burnup profile variations
- Cycle length
 - Burnup
- Reycling

Effect of Operating History on k_∞ (Nuclide Inventory)

M. D. DeHart, "Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages," ORNI /TM-12973, 1996.

Effect of power uprating on radioactivity of spent fuel

Xu, Zhiwen, "Design Strategies for Optimizing High Burnup Fuel in Pressurized Water Reactors", MIT doctoral thesis, January 2003.

Axial variations in neutron flux

- The end effect
 - The erroneous prediction of the multiplication factor when assuming a uniform-burnup distribution
 - The top of spent fuel is less burned.

J. C. WAGNER, Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit, ORNL/TM-2000/306

Actinide compositions (wt%) in highburnup spent fuels

$B_{\rm d}$	33 MWd/kg	50 MWd/kg	100 MWd/kg	150 MWd/kg	Bd	33 MWd/kg	50 MWd/kg	100 MWd/kg	150 MWd/kg
10 years after disc	<u>charge</u>				1000 years after disc	charge			
U-234	0.02	0.02	0.04	0.06	U-234	0.03	0.06	0.17	0.35
U-235	0.90	1.07	1.62	2.21	U-235	1.06	1.10	1.65	2.25
U-236	0.38	0.61	1.47	2.60	U-236	0.54	0.64	1.52	2.66
U-238	97.54	96.77	94.33	91.66	U-238	97.54	96.76	94.36	91.66
Np-237	0.04	0.08	0.20	0.34	Np-237	0.20	0.25	0.49	0.74
Pu-238	0.01	0.03	0.14	0.29	Pu-238	_	_	_	_
Pu-239	0.65	0.78	1.12	1.42	Pu-239	0.49	0.76	1.09	1.39
Pu-240	0.24	0.31	0.46	0.58	Pu-240	0.09	0.28	0.44	0.57
Pu-241	0.10	0.13	0.22	0.29	Pu-241	_	_	_	_
Pu-242	0.05	0.08	0.15	0.19	Pu-242	0.05	0.08	0.15	0.19
Am-241	0.06	0.09	0.16	0.21	Am-241	_	0.05	0.08	0.11
Am-242m	_	_	_	0.01	Am-242m	_	_	_	_
Am-243	0.01	0.02	0.05	0.08	Am-243	_	0.02	0.05	0.07
Cm-244	_	0.01	0.03	0.05	Cm-244	_	_	_	_
Cm-245	_	_	0.01	0.01	Cm-245	_	_	_	0.01
Pu-239/(Pu _{total})	62%	57%	54%	51%	Pu-239/Putotal	78%	68%	65%	65%

M. D. DeHart, "Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages," ORNL/TM-12973, 1996.

Changes in activity and heat load of different spent fuel as a function of cooling time

	Standard Burn	up UO2 fuel	Extended burn (60 GWD/TH	up UO2 fuel M)	MOX fuel (50 GWD/THM)		
Cooling periods yr	Actinides Total		Actinides	Total	Actinides	Total	
perious-yr	Activity (Ci)						
1	5.75E+05	8.72E+06	8.06E+05	9.73E+06	4.11E+06	1.24E+07	
3	4.85E+05	3.35E+06	6.66E+05	4.42E+06	3.47E+06	6.52E+06	
5	4.42E+05	2.13E+06	6.07E+05	3.10E+06	3.18E+06	4.96E+06	
7	4.04E+05	1.73E+06	5.56E+05	2.61E+06	2.91E+06	4.30E+06	
10	3.54E+05	1.46E+06	4.89E+05	2.24E+06	1.92E+06	2.83E+06	
	Heat load (W	/)					
1	2.84E+03	3.75E+04	6.04E+03	4.51E+04	2.92E+04	6.48E+04	
3	1.20E+03	1.24E+04	3.01E+03	1.80E+04	1.66E+04	2.86E+04	
5	1.13E+03	6.92E+03	2.80E+03	1.16E+04	1.56E+04	2.18E+04	
7	1.12E+03	5.25E+03	2.71E+03 9.28E+03		1.51E+04	1.94E+04	
10	1. <u>11E+03</u>	4.36E+03	2.60E+03	7.84E+03	1.32E+04	1.57E+04	

Cooling Effects

Radioactivity per MTIHM after discharge Radioactivity per GW-yr(e) after discharge

Decay power per MTIHM after discharge

Decay power per GW-yr(e) after discharge

KAIS1

Xu, Zhiwen,"Design Strategies for Optimizing Hign Burnup Fuei in Pressurized Water Reactors", MIT doctoral thesis, January 2003.

Fraction of decay-heat generation for 5-wt % 235U PWR fuel

I. C. Gauld and J. C. Ryman, "Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel," NUREG/CR–6700, 2000.

	Burnup / enrichment											
	20 GV	Vd/t	50 GV	Vd/t	30 GV	Vd/t	60 GV	Vd/t	40 G\	Vd/t	70 GV	Vd/t
	3 wt	%	3 wt	%	4 wt	%	4 wt	%	5 wt	%	5 wt	%
Nuclide ^a	Percent	Rank	Percent	Rank	Percent	Rank	Percent	Rank	Percent	Rank	Percent	Rank
5-Year coo	ling				•		•					
Am-241	1.96	10	1.54	12	1.96	10	1.44	12	1.90	12	1.36	12
Ba-137m	20.10	2	16.81	2	20.01	2	16.68	2	19.75	2	16.51	2
Ce-144	0.75	15	0.29	18	0.58	17	0.25	18	0.46	17	0.21	18
Cm-244	0.69	16	13.25	4	1.66	12	14.10	4	2.84	10	14.91	4
Co-60	4.68	8	3.80	8	3.81	9	3.18	9	3.23	9	2.74	9
Cs-134	10.88	3	17.45	1	13.43	3	17.70	1	15.01	3	17.74	1
Cs-137	6.02	6	5.03	7	5.99	6	4.99	7	5.92	5	4.95	7
Eu-154	1.41	11	2.26	11	1.84	11	2.32	11	2.15	11	2.38	11
Kr-85	0.60	17	0.39	15	0.59	16	0.40	15	0.57	15	0.40	15
Pm-147	1.36	12	0.53	14	1.11	13	0.47	14	0.93	13	0.43	14
Pr-144	8.42	5	3.24	9	6.49	5	2.77	10	5.15	7	2.40	10
Pu-238	2.38	9	6.43	6	3.83	8	7.59	5	5.24	6	8.66	5
Pu-239	0.87	14	0.34	16	0.68	15	0.31	16	0.57	16	0.28	16
Pu-240	0.94	13	0.68	13	0.82	14	0.60	13	0.72	14	0.54	13
Pu-241	0.19	19	0.14	19	0.18	19	0.13	19	0.17	19	0.12	19
Rh-106	10.08	4	8.57	5	8.74	4	7.19	6	7.55	4	6.17	6
Sb-125	0.41	18	0.34	17	0.38	18	0.30	17	0.34	18	0.27	17
Sr-90	4.84	7	3.20	10	4.78	7	3.32	8	4.72	8	3.39	8
Y-90	23.08	1	15.27	3	22.82	1	15.83	3	22.48	1	16.15	3
Total (W/t)	1090		3170		1630		3790		2180		4430	
100-Year c	ooling		•		•		•					
Am-241	46.58	1	39.22	1	44.98	1	35.98	1	42.48	1	33.32	1
Am-243	0.08	10	0.50	10	0.13	10	0.49	10	0.17	10	0.47	10
Ba-137m	13.93	2	12.99	3	13.69	2	12.84	3	13.47	3	12.62	3
Cm-244	0.11	9	2.42	7	0.27	9	2.56	7	0.46	9	2.69	7
Cs-137	4.17	7	3.89	6	4.10	7	3.85	6	4.04	6	3.78	6
Pu-238	7.00	4	21.09	2	11.13	4	24.80	2	15.20	2	28.09	2
Pu-239	5.43	6	2.39	8	4.20	6	2.13	9	3.49	7	1.92	9
Pu-240	5.79	5	4.90	5	4.99	5	4.35	5	4.43	5	3.92	5
Sr-90	2.90	8	2.14	9	2.83	8	2.21	8	2.78	8	2.24	8
Y-90	13.84	3	10.22	4	13.52	3	10.55	4	13.28	4	10.68	4
Total (W/t)	175		456		265	•	549		356		645	

^a Greater than 0.1% of total decay-heat-generation rate for any burnup/enrichment combination.

Radionuclides decay-heat rankings for PWR fuel

I. C. Gauld and J. C. Ryman, "Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel," NUREG/CR–6700, 2000.

	•	Burnup / Enrichment										
	20 G	Wd/t	50 GV	Vd/t	30 GV	Vd/t	60 GV	Vd/t	40 GV	Vd/t	70 GV	Vd/t
	3 wt	t %	3 wt	%	4 wt	%	4 wt	%	5 wt	%	5 wt	%
Nuclide ^a	Percent	Rank	Percent	Rank	Percent	Rank	Percent	Rank	Percent	Rank	Percent	Rank
5-Year co	oling				•							
Am-241	1.94	9	1.43	11	1.88	10	1.32	11	1.79	11	1.24	11
Ba-137m	20.72	2	17.18	2	20.48	2	17.04	2	20.18	2	16.87	2
Ce-144	0.78	15	0.30	18	0.60	17	0.25	18	0.47	17	0.22	18
Cm-244	0.78	16	13.94	4	1.80	11	14.68	4	2.99	9	15.38	4
Co-60	1.59	10	1.30	12	1.29	12	1.09	12	1.09	12	0.94	12
Cs-134	11.40	3	17.97	1	13.84	3	18.15	1	15.33	3	18.13	1
Cs-137	6.21	6	5.15	7	6.14	6	5.10	7	6.05	5	5.05	7
Eu-154	1.49	11	2.25	10	1.90	9	2.29	10	2.19	10	2.32	10
Kr-85	0.62	17	0.40	15	0.61	16	0.41	15	0.59	15	0.41	15
Pm-147	1.39	12	0.53	14	1.13	13	0.48	14	0.95	13	0.43	14
Pr-144	8.70	5	3.32	8	6.68	5	2.84	9	5.29	7	2.46	9
Pu-238	2.56	8	6.49	6	3.99	8	7.56	5	5.35	6	8.54	5
Pu-239	0.87	14	0.33	17	0.67	15	0.29	17	0.55	16	0.26	17
Pu-240	0.97	13	0.71	13	0.84	14	0.63	13	0.75	14	0.57	13
Pu-241	0.19	19	0.13	19	0.18	19	0.12	19	0.16	19	0.11	19
Rh-106	10.32	4	8.71	5	8.82	4	7.29	6	7.56	4	6.25	6
Sb-125	0.42	18	0.35	16	0.38	18	0.31	16	0.35	18	0.28	16
Sr-90	5.00	7	3.29	9	4.92	7	3.41	8	4.85	8	3.48	8
Y-90	23.83	1	15.70	3	23.47	1	16.28	3	23.12	1	16.62	3
Total (W/t)	1060		3090		1590		3710		2130		4330	
100-Year	cooling											
Am-241	45.56	1	37.18	1	43.30	1	33.93	1	40.55	1	31.31	1
Am-243	0.08	10	0.51	10	0.13	10	0.49	10	0.17	10	0.47	10
Ba-137m	14.19	2	13.48	3	14.08	2	13.37	3	13.94	3	13.20	3
Cm-244	0.13	9	2.58	7	0.29	9	2.72	7	0.49	9	2.84	7
Cs-137	4.25	7	4.04	6	4.22	6	4.01	6	4.18	6	3.95	6
Pu-238	7.46	4	21.60	2	11.64	4	25.20	2	15.71	2	28.34	2
Pu-239	5.36	6	2.29	8	4.11	7	2.03	9	3.40	7	1.83	9
Pu-240	5.94	5	5.21	5	5.18	5	4.64	5	4.65	5	4.20	5
Sr-90	0.01	8	2.24	9	2.93	8	2.32	8	2.90	8	2.36	8
Y-90	14.13	3	10.66	4	13.96	3	11.06	4	13.82	4	11.25	4
Total	172		439		257		526		343		616	

Radionuclides decay-heat rankings for BWR fuel

I. C. Gauld and J. C. Ryman, "Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel," NUREG/CR–6700, 2000.

^a Greater than 0.1 % of total decay-heat-generation rate for any humup/enrichment combination

Fraction of total dose from dominant nuclides (5-wt % PWR fuel, steel transport cask)

5 year cooling

100 year cooling

I. C. Gauld and J. C. Ryman, "Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel," NUREG/CR–6700, 2000.

Relative contribution of neutrons to the total dose rate (5-wt % PWR fuel)

I. C. Gauld and J. C. Ryman, "Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel," NUREG/CR–6700, 2000.

		Stee	l cask		(te cask		Lead cask				
	20 GV	Vd/t	70 GV	Vd/t	20 GV	Vd/t	70 GV	Vd/t	20 G	Wd/t	70 GV	Vd/t
	3.0 w	t %	5.0 w	t %	3.0 w	t %	5.0 w	t %	3.0 w	vt %	5.0 w	t %
Nuclides ^a	Percent ^b	Rank	Percent	Rank	Percent	Rank	Percent	Rank	Percent	Rank	Percent	Rank
5-Year coo	ling											
Ba-137m	3.0	6	2.3	7	9.2	4	8.9	4	0.2	8	0.1	8
Cm-244	1.8	7	36.1	1	0.3	8	8.3	5	1.9	6	36.6	1
Co-60	49.8	1	26.4	2	50.3	1	34.6	1	56.4	1	29.9	2
Cs-134	10.7	3	15.8	3	14.0	2	26.7	2	10.2	3	15.0	3
Eu-154	4.6	5	7.0	4	5.5	6	10.9	3	4.5	5	6.9	4
Pr-144	19.6	2	5.0	5	12.4	3	4.2	7	17.3	2	4.4	6
Rh-106	9.0	4	5.0	6	6.9	5	5.0	6	8.2	4	4.5	5
Y-90	1.0	8	0.6	8	1.1	7	0.9	8	1.0	7	0.6	7
100-Year c	ooling											
Am-241	18.6	2	4.3	4	2.2	3	1.3	5	2.9	1	5.4	3
Ba-137m	42.0	1	12.4	3	85.6	1	66.9	1	3.6	6	0.7	8
Cm-244	6.0	5	46.6	1	0.7	5	14.8	2	9.5	4	52.3	1
Cm-246	0.3	9	23.7	2	0.0	9	7.5	3	0.5	9	26.6	2
Pu-238	3.2	6	4.2	5	0.4	6	1.3	6	5.6	5	5.2	4
Pu-239	1.8	8	0.2	9	0.2	8	0.1	9	3.2	8	0.3	9
Pu-240	13.3	3	2.9	7	1.6	4	0.9	7	21.5	2	3.3	6
Pu-242	2.2	7	1.7	8	0.3	7	0.5	8	3.5	7	1.9	7
Y-90	11.9	4	3.0	6	8.7	2	5.8	4	18.9	3	3.4	5

Shielding rankings for dominant radionuclides in PWR fuel

^a Dominant nuclides that contribute more than 1% to the total dose rate.

^b Indicates percentage contribution of the nuclide to the total dose rate for the cask configuration.

I. C. Gauld and J. C. Ryman, "Nuclide Importance to Criticality Safety, Decay Heating, and Source Related to Transport and Interim Storage of High-Burnup LWR Fuel," NUREG/CR–6700, 2000.

		Steel	cask			ete cask	Lead cask					
	20 GV	Vd/t	70 GV	Vd/t	20 GV	Vd/t	70 GV	Vd/t	20 GV	Vd/t	70 GV	Vd/t
	3.0 w	t %	5.0 w	t %	3.0 w	3.0 wt %		t %	3.0 wt %		5.0 wt %	
Nuclides ^a	Percent ^b	Rank	Percent	Rank	Percent	Rank	Percent	Rank	Percent	Rank	Percent	Rank
5-Year cool	ing											
Ba-137m	4.5	6	2.7	7	13.9	4	11.6	4	0.3	8	0.2	9
Cf-252	0.0	9	1.3	8	0.0	9	0.3	9	0.0	9	1.4	7
Cm-244	3.0	7	43.9	1	0.5	8	10.9	5	3.3	6	45.8	1
Co-60	24.5	2	10.7	3	24.9	1	15.1	2	29.7	1	12.5	3
Cs-134	16.2	3	19.1	2	21.3	2	34.9	1	16.5	3	18.7	2
Eu-154	7.0	5	8.1	4	8.4	6	13.5	3	7.4	5	8.2	4
Pr-144	29.3	1	6.1	5	18.7	3	5.4	7	27.6	2	5.5	6
Rh-106	13.4	4	6.0	6	10.3	5	6.4	6	13.0	4	5.6	5
Y-90	1.5	8	0.8	9	1.6	7	1.2	8	1.6	7	0.8	8
100-Year co	oling											
Am-241	17.8	2	3.8	5	2.1	3	1.2	6	31.5	1	4.8	4
Ba-137m	42.0	1	12.2	3	85.6	1	66.7	1	3.6	6	0.7	8
Cm-244	6.6	5	46.2	1	0.8	5	14.8	2	10.4	4	51.7	1
Cm-246	0.4	9	25.0	2	0.0	9	8.1	3	0.6	9	28.0	2
Pu-238	3.4	6	4.0	4	0.4	6	1.3	5	5.8	5	4.9	3
Pu-239	1.8	8	0.2	9	0.2	8	0.1	9	3.2	8	0.2	9
Pu-240	13.4	3	3.0	6	1.6	4	0.9	7	21.6	2	3.4	5
Pu-242	2.2	7	1.6	8	0.3	7	0.5	8	3.4	7	1.8	7
Y-90	11.9	4	3.0	7	8.7	2	5.8	4	19.0	3	3.3	6

Shielding rankings for dominant radionuclides in BWR fuel

^a Dominant nuclides that contribute more than 1% to the total dose rate.

^b Indicates percentage contribution of the nuclide to the total dose rate for the cask configuration.

^a Indicates percentage contribution of the function of the f

IST

	Burnup / enrichment											
	20 GWd/t		50 GWd/t		30 GWd/t		60 GWd/t		40 GWd/t		70 GWd/t	
	3 wt %		3 wt %		4 wt %		4 wt %		5 wt %		5 wt %	
$Nuclide^a$	Percent I	Rank	Percent	Rank								
5-Year cooling												
Am-241	0.63	7	1.36	6	0.82	7	1.40	6	0.95	7	1.43	6
Am-243	0.03	12	0.50	10	0.08	12	0.56	10	0.13	12	0.61	11
Np-237	0.26	8	0.73	9	0.42	8	0.91	9	0.59	8	1.08	9
Pu-238	0.05	11	0.41	11	0.10	11	0.52	11	0.17	10	0.63	10
Pu-239	25.23	2	27.66	2	24.71	2	26.66	2	24.14	2	25.82	2
Pu-240	6.48	4	9.17	3	6.87	4	8.97	3	7.04	4	8.80	3
Pu-241	3.06	5	6.51	4	3.70	5	6.39	4	4.08	5	6.30	5
Pu-242	0.18	9	1.05	7	0.32	9	1.09	8	0.44	9	1.13	8
U-234	0.14	10	0.08	12	0.15	10	0.10	12	0.16	11	0.12	12
U-235	22.88	3	5.22	5	21.69	3	6.31	5	20.97	3	7.15	4
U-236	0.75	6	0.94	8	1.01	6	1.17	7	1.23	6	1.37	7
U-238	30.88	1	30.35	1	29.27	1	29.09	1	28.00	1	28.00	. 1
Total	90.59		84.12		89.17		83.34		87.94		82.62	
100-Year	cooling											
Am-241	2.43	5	5.11	5	3.09	5	5.16	5	3.53	5	5.21	5
Am-243	0.03	10	0.51	9	0.08	10	0.57	9	0.13	10	0.62	9
Np-237	0.38	7	0.99	7	0.58	7	1.18	7	0.77	7	1.36	7
Pu-238	0.02	11	0.20	11	0.05	11	0.25	11	0.08	11	0.30	11
Pu-239	25.50	2	28.31	2	25.01	2	27.24	2	24.45	2	26.35	2
Pu-240	6.51	4	9.74	3	6.94	4	9.60	3	7.14	4	9.49	3
Pu-242	0.19	8	1.08	6	0.32	8	1.12	8	0.44	8	1.15	8
U-234	0.16	9	0.22	10	0.19	9	0.28	10	0.23	9	0.34	10
U-235	23.21	3	5.38	4	22.04	3	6.49	4	21.32	3	7.34	4
U-236	0.77	6	0.97	8	1.03	6	1.20	6	1.25	6	1.41	6
U-238	31.29	1	31.13	1	29.71	1	29.79	1	28.44	1	28.63	1
Total	90.52		83.78		89.08		83.04		87.85		82.36	

Criticality safety rankings of actinides in PWR fuel

I. C. Gauld and J. C. Ryman, "Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel," NUREG/CR–6700, 2000.

" Nuclides that contribute more than 0.1% to the total absorption rate.

	Burnup / enrichment											
	20 GWd/t		50 GV	Wd/t 30 G		Wd/t	60 GWd/t		40 GWd/t		70 GWd/t	
	3 wt %		3 wt %		4 wt %		4 wt %		5 wt %		5 wt %	
Nuclide ^a	Percent	Rank	Percent	Rank	Percent	Rank	Percent	Rank	Percent	Rank	Percent	Rank
5-Year cooling							•					
Am-241	0.61	7	1.31	6	0.79	7	1.34	6	0.91	7	1.36	6
Am-243	0.04	12	0.51	10	0.08	12	0.56	10	0.13	12	0.61	11
Np-23	0.27	8	0.75	9	0.43	8	0.92	9	0.59	8	1.09	9
Pu-238	0.06	11	0.45	11	0.11	11	0.56	11	0.18	10	0.67	10
Pu-239	4.69	2	27.21	2	24.14	2	26.21	2	23.56	2	25.36	2
Pu-240	6.25	4	8.95	3	6.57	4	8.75	3	6.72	4	8.59	3
Pu-241	2.99	5	6.41	4	3.59	5	6.30	4	3.95	5	6.21	5
Pu-242	0.19	9	1.04	7	0.32	9	1.07	8	0.43	9	1.10	8
U-234	0.14	10	0.09	12	0.15	10	0.10	12	0.16	11	0.12	12
U-235	3.42	3	5.11	5	22.35	3	6.15	5	21.65	3	6.95	4
U-236	0.76	6	0.93	8	1.00	6	1.15	7	1.20	6	1.34	7
U-238	30.05	1	29.74	1	28.39	. 1	28.48	1	27.12	1	27.38	1
Total	89.47		82.63		87.94	-	81.77		86.64		80.99	
100-Year	cooling											
Am-241	2.38	5	4.94	5	2.98	5	4.98	5	3.38	5	5.01	5
Am-243	0.04	10	0.52	9	0.08	10	0.57	9	0.13	10	0.62	9
Np-237	0.39	7	1.00	7	0.58	7	1.18	7	0.77	7	1.35	7
Pu-238	0.03	11	0.22	11	0.05	11	0.27	11	0.09	11	0.33	11
Pu-239	24.94	2	27.87	2	24.43	2	26.81	2	23.86	2	25.92	2
Pu-240	6.28	4	9.52	3	6.64	4	9.38	3	6.82	4	9.27	3
Pu-242	0.19	8	1.06	6	0.33	8	1.10	8	0.44	8	1.13	8
U-234	0.16	9	0.22	10	0.19	9	0.28	10	0.23	9	0.34	10
U-235	23.75	3	5.27	4	22.70	3	6.33	4	22.01	3	7.14	4
U-236	0.77	6	0.97	8	1.02	6	1.19	6	1.23	6	1.38	6
U-238	30.44	1	30.52	1	28.81	1	29.20	1	27.54	1	28.04	1
Total	89.40		82.25		87.85		81.43		86.55		80.69	

^d Nuclides that contribute more than 0.1% to the total absorption rate.

Criticality safety rankings of actinides in BWR fuel

I. C. Gauld and J. C. Ryman, "Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel," NUREG/CR–6700, 2000.

Fuel Cycle Concepts and Impacts

- Once-through: Open pass through reactor, used fuel directly disposed in a geologic repository
 - Low uranium utilization Appropriate for a low price uranium future
 - Appropriate when repository capacity is not limited
- Modified Open: No or limited separation steps and processing applied to used fuel to extract more energy
 - Higher uranium utilization and burnup Appropriate for a high price uranium future
 - Appropriate when repository capacity is a major constraint
- Closed (Full Recycle): Only elements considered to be waste are discarded and useful elements are recycled to more fully utilize resources
 - Multiple reprocessing and recycle steps resulting in transmutation of most actinides

Global Spent Fuel Generation (IAEA)

Spent Fuel Characteristics

Less diversity expected in the future

Average discharge burnup

Average initial enrichment

Spent Fuel Burnup and Integrity

BU increase -> Oxide thickness increase -> Hydrogen content increase

➡ Reduced heat removal capability, Hydride reorientation effect

Comparisons of Fuel Cycle Options

Inventory of HLW in Geologic Repository

Comparisons of Projected Repository Dose

Impact on proliferation resistance LWR-OT: UO₂ burnup comparison

S. E. Skutnik and M.-S. Yim, "Assessment of Fuel Cycle Proliferation Resistance Dynamics Using Coupled Isotopic Characterization," <u>Nuclear Engineering and Design</u>, Vol. 241, no. 8, pp. 3270–3282, 2011

Impact on proliferation resistance MOX: UO₂ burnup comparison

S. E. Skutnik and M.-S. Yim, "Assessment of Fuel Cycle Proliferation Resistance Dynamics Using Coupled Isotopic Characterization," <u>Nuclear Engineering and Design</u>, Vol. 241, no. 8, pp. 3270–3282, 2011

Fuel Cycle System Comparison

Performance of Spent Fuel Management

(Comparison of Fuel Cycles)

	ОТ	FR-PYRO	OT-PYRO	OT-ER				
HLW generation rate (kgHM/GWh)	1.824	0.112	0.142	1.814				
U utilization efficiency (%)	0.84	1.54	0.84	0.84%				
Natural uranium required (tU/TWh)	17.44	10.80	17.44	17.44				
Maximum loading of HLW per repository (MTU)	35,361	42,433	46,035	58,499				
Total energy produced per fully loaded HLW repository (GWh)	1.94E+7	3.80E+8	3.24E+8	3.22E+7				
Ratio of total energy produced per one fully loaded HLW repository to the OT cycle case	1.0	19.6	16.7	1.67				
Ratio of total cumulative dose to humans per fully loaded HLW repository to the OT cycle case	1.0	29.8	29.5	0.23				
Proliferation resistance	0.537 (H)	0.523 (H)	0.501(H)	0.503 (H)				
Fuel cycle cost (\$/MWh)	7.81	7.83	9.46	10.55				
Total electricity generation cost (\$/MWh)	34.9	41.7	36.6	37.7				
5. Yim, An Analysis for Policy Development for Republic of Korea's National Spent Fuel KALS								

M.S. Yim, An Analysis for Policy Development for Republic of Korea's National Spent Fuel Management Systems, KAIST, 2013

Summary

- Fuel design and reactor operation affect spent fuel management through their impact on the production of nuclide inventory, characteristics of the nuclides, and material integrity.
- With the select design features of nuclear fuels, the effect of fuel design on spent fuel management is relatively well characterized.
- The effect of reactor operation seems to have large variations in nuclide inventory and material integrity.
 - The final nuclide inventory is most sensitive to late-in-power variations.
 - Low-power operation near the end of cycle leads to decreased fission product inventory.
 - Long downtime between the cycles or during the cycle appears to have positive effect on spent fuel management
 - Recycling of spent fuel is shown to reduce the burden of final disposal of nuclear waste.
 - Burnup effect is dominant in controlling nuclide inventory in soent fuel.
- In general, achieving better uranium utilization efficiency appears to increase the burden in spent fuel management through increased production of the nuclides of concern.
- Overall performance of spent fuel management needs to be evaluated from a life cycle-based systems approach.