

How innovative approaches & technologies throughout the Fuel Cycle are supporting NPP Operations while anticipating future back-end Challenges

Dr. Mustapha Chiguer, Jean-Michel Grygiel

AREVA 1, Place Jean Millier 92084 Paris-la-Defense, France mustapha.chiguer@areva.com

> IAEA International Conference on Management of Spent Fuel from NPP Vienna – June 15-19, 2015

Risk Reduction

- Nuclear safety
- Non-proliferation & security
- Environmental impact & footprint
- Public acceptance
- Cost or financial Uncertainties

Nuclear System Performance

- Increase energy independence
- Optimize cost of nuclear electricity
- Increase Plant availability and Performance
- Save natural resources (uranium, DGR footprint, ...)
- Minimize waste generated

Structuring Policy and Regulation

International Agreements

ex. Joint Convention on the Safety of SF & RW Management of 1997 "Each Contracting Party shall ensure the prime responsibility for the safety of SF or RW rests with the holder of the relevant license"

European Union Directive

European Council Directive 2011/70/Euratom of July 19, 2011 "Each Member state shall have ultimate responsibility for management of SF and RW generated in it"

National Policy

French Nuclear Waste Act of June 28, 2006 "Nuclear Operators Commit for SF & RW Mgt funding while minimizing industrial footprint"

- By authorizing Nuclear activities on its soil, the state take a Long term responsibility regarding Used Fuel & RW Management policy
- By Operating NPP or Facility, **Operators** take also Long Term responsibility

LT Responsibility requires a look at the individual Fuel Cycle steps and how they all impact each other

At the Front-End the Fuel is a technology demanding and driven business

Front-End

- Containment and Handling of nuclear material
- In the Reactor (all together for 3 to 6 years)
- Containment of the nuclear material, the cladding is the first barrier
- Maintaining geometry, chain reaction control
- Extracting power
- Ability of the core to cool down in the event of an accident

- Back-End, On leaving the reactor
 - Containment and handling of the nuclear material
 - Removal of decay heat
 - Ability to be stored
 - Wet or dry conditions
 - For more and more extended time
 - Ability to be reprocessed and recycled
 - Ability to be transported
 - Ability to be disposed in DGR

Case 1 – GAIA fuel,

Innovation based on Proven products and high performance Features

GAIA New Generation Fuel

Based on Current AREVA fuel designs,

- HTP[™] with its proven robustness against GTRF failures
- AFA-3G[™] with its excellent thermal-hydraulic performance

High-performing features

- ◆ Reinforced MONOBLOC[™] guide tube
- High density chromium doped pellets
- GRIP[™] bottom nozzle
- M5[®] Cladding

Case 1 – GAIA fuel,

Innovation based on Proven products and high performance Features

Enhanced Reliability and Robustness through :

- Superior rod supports ensuring that GTRF margins are kept for long cycles and severe environments
- Increased margins against incomplete rod insertion and FA distortion
- Superior debris fretting efficiency
- Increased Flexibility
 - M5[®] excellent corrosion resistance allows higher BU
 - Chamfered pellets made of chromium doped fuel:
 - Reduce the risk of chipping and increase margins re. PCI allowing more flexible Plant Operation
 - Increase design margins at the EoL conditions which is supported by a low volume of fuel rod spring
 - M5[®] higher resistance to corrosion and low Hydrogen uptake are both key to flexible used fuel Management corrosion resistance and ductility (ex. Storage, Extended interim storage periods, Transport after storage)

100 Zircaloy-4 Cladding Ē 90 80 70 60 50 M5® Oxide layers < 40µm 40 30 20 ň 80 20 30 70 40 50 60 Fuel rod average burnup (GWd/tU) 600 Zircalov-4 Cladding 500 đ 400 ť 300 4ydr 200 M5[®] H conten < 100 ppm wt 100 0 10,000 20,000 30.000 40.000 50,000 60,000 70.000

Fuel rod burnup (MWd/tU)

Excellent LT Behavior through enhanced resistance and lower sensitivity to highly irradiated cladding and Fuel Assembly Structure

AREVA forward-looking energy

The concern Recycle all nuclear Materials prior to reactor End-of-Life (EoL)

- Single or small reactor fleets
- Limited lifespan

PRECYLING

Advanced Recycling Solution

- Brings to 0 the balance of used fuel and fissile materials at NPP EoL
 - Drastically reduces all risks related to LT Management of used fuels
- Reduces Front-End requirements

Brings to 0 the balance of used fuel and fissile materials at NPP EoL

Core's Plutonium balance sheet at the end of every 3 cycles

Early and Sufficient Pu consumption key to offset Pu production during electricity generation in Uranium Oxide fuel

AREVA forward-looking energy

Case 2 – The PreCycling A Dutch Case at EPZ - Borsele

AREVA loans MOX that will be loaded in the reactor from 2014 until 2026. Last MOX assembly will be discharged by 2033

3

1

Until 2033, the NPP will be operated with Uranium fuel only. Plutonium resulting from treatment will be transferred to AREVA as a re-imbursement of the loaned Plutonium

No Dutch plutonium left; only residues will be returned to Netherlands for storage & disposal (No Used Uox or MOX Fuels left!)

Decay Heat Removal, a continuous challenge as safety cases keep changing and Facility EoL and End-point fading

Confluence of reasons

- Extension of NPP lifetime,
- Delays in BE strategy implementation,
- Fukushima Lessons Learned
- Limited remaining capacity at SFP
- More stringent safety requirements at existing SFP

AREVA Wet Passive Cooling brings response

- Fail-safe decay Heat Removal Solution
- Qualified and proven Solution
- Flexible and adaptable solution:
 - New build or existing facility
 - Footprint to various site-specific conditions

Case 3 - Decay Heat Removal, A challenging duty operation due to a confluence of safety, life extension management and lack of end-point

Main benefits AREVA Wet Passive Cooling

- Ensures cooling of the pool in case of loss of power supply (SBO)
 - No emergency Diesel required
 - No safety-related I&C is required
 - Avoids active single failure criterion for the fuel pool cooling function
- Marginal Operational Costs
 - Dedicated maintenance and repair concept for full time
- Easily licensable
- Small footprint and adaptable to almost every site specific conditions
- Proven design and construction & operation experiences gained

Case 3 - Decay Heat Removal A Swiss Case at Goësgen

Main design features

- Storage building dim. 35m x 17m
- Capacity: 1008 SF assemblies (UOX & MOX)
- Minium cooling period prior to receive SF

Passive Fuel Cooling System

- Decay Heat Power to be removed from the SFP: 1,0MW maximum
- Heat removal from the spent fuel pool is achieved by natural circulation supported by fans during normal operation

The fuel pool cooling system is designed to manage accidents without active components

- Free convection in the SFP
- Natural convection in the intermediate cooling system
- Natural ventilation in the dry cooling towers

forward-looking energy

Radioactive Waste Management: how to take-up present and future challenges

Target the zero waste objective

when designing

- A stepwise approach serving this ambition
- Example : the cold crucible melter
 Lifetime x 10 > less technological waste
- Integration of operational feedback

when operating

- Strengthen the zoning of facilities and equipment ergonomics
 - Systematic assesment of the waste zoning relevance

Radioactive Waste Management: how to take-up present and future challenges

forward-looking energy

Conclusion and Takeaway

- Do consider entire life cycle when developing and implementing Operation or technology innovations
 - Discourage local optimization at the expense of overall system performance
- The best waste being the waste that hasn't been generate
 - Avoid Waste, if not, do recycle
- Do not miss opportunity
- Trends across nuclear countries, in cascading Used Fuel and Waste management responsibility, are encouraging
 - EU members' 2011 Council Directive on the responsible and safe management of Spent Fuel and Radioactive Waste
 - IAEA's 2014 Scientific Forum on Comprehensive & integrated "cradleto-grave" approach for the Management of NW

Thank you for your attention

IAEA International Conference on Management of Spent Fuel from NPP Vienna – June 15-19, 2015

