Demonstration Test Program for Long-term Dry Storage of PWR Spent Fuel

17 June 2015

S.Fukuda, The Japan Atomic Power Company N.Irie, The Kansai Electric Power Co., Inc. Y.Kawano, Kyusyu Electric Power Co., Inc. K.Nishi, J.Kishimoto, Mitsubishi Heavy Industries, Ltd.

Contents

1. Background

2. Demonstration Test Program

- Organization
- > Test Overview and Process
- > Fuel Specification for DemonstrationTest
- > Verification Method of Fuel Integrity

3. Test Container

- > Outline of Test Container
- > Manufacturing of Test Container
- > Heat Transfer Test Plan
- > Test Results and Thermal Analysis

4. Preparation for Demonstration Test

- Fuel Temperature Estimated
- Fuel Inspections

5. Summary

1. Background

- Mutsu interim spent fuel storage facility in Japan is preparing for the maximum 50-year storage of spent fuels in dry metal casks for both transportation and storage.
- To reduce risk of radiation exposure to workers and waste materials, the facility has <u>no hot cell</u>. It is required that <u>the spent fuels stored will be</u> <u>confirmed for their integrity indirectly by monitoring cask</u> during storage, and also will be transported after the storage <u>without opening the cask lid.</u>

Long-term storage test in domestic research facility to accumulate knowledge and experience on_ <u>"Iong-term integrity of PWR spent fuels"</u> during dry storage.

To make assurance doubly sure on safety of transportation after storage.

2. Demonstration Test Program (2/4) Test Overview and Process

Time Schedule of Demonstration Test for PWR Fuel Storage

Japanese Fiscal year	2009	2010	2011	2012	2013	2014	2015	2016 _2025	2026 – 2075
Planning & Designing		Planning Designin Safe	g ty analysi	s Lice	nsing(Co	ntainer)	Lice	nsing(Test facil	ty)
Manufacture & Preparation			Ins	Prepara	M Ition & of fuel	anufact Heat tra	uring of nsfer te	the test con st Wd/t fuel paded	55GWd/t fuel
Demonstration test & Inspections				48G\	Vd/t typ Gas	e fuel te 550 samplii	st GWd/tty ng △	\triangle \triangle	Δ Δ
							Ca	ise 1	Case 2

2. Demonstration Test Program (3/4) Fuel Specification for Demonstration Test

> Two spent fuel assemblies are planned to be loaded in the test container.

	48GWd/t	55GWd/t				
гиеттуре	17x17	17x17				
Burn-up [MWd/t]	42,800 (past record)	≤55,000 (assumption)				
Cladding material	Zircalloy-4	MDA or ZIRLO				
Cooling period when loaded [years]	21 (as of June, 2015)	≥10 (as of October, 2025)				
Time to loading	At the middle of 2015	At the middle of 2025				
Remarks	15 empty fuel rods	a proper spent fuel will be				

(used for PIE)

Fuel Specification for Demonstration Test

prepared in the future

2. Demonstration Test Program (4/4) Verification Method of Fuel Integrity

3. Test Container (1/5) Outline of Test Container

3. Test Container (2/5) Manufacturing of Test Container

Welding of Flange, Inner Container and Base plate

Installing of Inner Thermal Insulator

Welding of Mid-body

3. Test Container (3/5) Heat-transfer Test Plan

Two heat transfer tests were conducted in order to evaluate thermal performance of the test container.

3. Test Container (4/5) Test Results and Thermal Analysis (Case 1)

- One of dummy fuels was heated electrically under the vacuum condition in the cavity to simulate the 48 GWd/t type fuel storage test.
- > Thermal analysis was conducted by using ABAQUS code.
- > Temperatures estimated are well agreed with the heat transfer test results.

Temperature estimation method for the 48 GWd/t type storage test was verified.

3. Test Container (5/5)

Test results and Thermal Analysis (Case 2)

- Both of dummy fuels were heated electrically under the Helium gas condition in the cavity to simulate the 48/55 GWd/t type fuels storage test.
- Thermal analysis was conducted by using FLUENT code in order to consider a convection heat transfer with Helium gas.
- > Temperatures estimated are well agreed with the heat transfer test results.

4. Preparation for Demonstration Test (1/2) Fuel Temperature Estimated

Temperatures of the fuels at the beginning of each test case are estimated by using the verified temperature estimation methods.

	Case 1	Case 2						
Fuel type	48GWd/tfuel	48GWd/tfuel	55GWd/t fuel					
Heat load	513W	428W	969W					
Ambient temperature	10°C	10°C	10°C					
Max. fuel temperature estimated	216°C	172°C	190°C					
Waxing the second secon								

4. Preparation for Demonstration Test (2/2) Fuel Inspections

- Before loading the 48 GWd/t type fuel into the test container, visual inspections of the fuel were carried out.
- Visual / dimensional inspections of four fuel rods extracted from the fuel were also carried out.
 - No significant crack,
 No deformation
 No adhesion of foreign
 - substances

External Surface of 48GWd/t Type Fuel

5. Summary

- Some Japanese utilities planned to conduct the <u>demonstration test</u> for up to 60 years to accumulate knowledge and experiences on <u>long-term integrity of PWR spent fuel during dry storage</u>.
- The test container was manufactured. <u>Heat-transfer tests</u> were carried out to evaluate a thermal performance of the test container and thermal estimation methods were established.
- <u>Maximum fuel temperatures</u> at the beginning of the test were estimated by using the verified temperature estimation methods.
- Visual inspections for 48GWd/t type fuel have been carried out before loading and its integrity was confirmed.
- Final licensing procedure for the test facility is being performed. <u>The demonstration test will start at the middle of JFY2015</u>.
- ✓ Others --- We thank Nuclear Regulation Authority (Formerly Japan Nuclear Energy Safety Organization) for incorporating in the heat-transfer tests.

Thank you for your attention.