

Development of long-term safety requirements for an alternative design variant (KBS-3H) for spent fuel disposal

Annika Hagros¹, Barbara Pastina², Margit Snellman¹, Jan-Olof Selroos³

1) Saanio & Riekkola Oy, 2) Posiva Oy, 3) SKB AB

International Conference on Management of Spent Fuel from Nuclear Power Reactors - An Integrated Approach to the Back-End of the Fuel Cycle, IAEA, Vienna, 15–19 June 2015.

6/17/2015

Contents

- Background on KBS-3H design alternative
- Posiva's requirement management system VAHA
- Barriers of the KBS-3H system
- Formulation of requirements for KBS-3H
- Challenges in the requirement development process

Background on KBS-3H design alternative

KBS-3H is of interest because of several reasons, e.g. it minimises the volume of excavated rock and there is no need for deposition tunnel backfill

6/17/2015

SAANIO & RIEKKOLA DY

3

Background on KBS-3H design alternative

- KBS-3 method studied since the 1970s, KBS-3V being the reference design
- Horizontal variants proposed from early on, KBS-3H project initiated in 2002, a joint project SKB-Posiva
- First KBS-3H safety assessment for the Olkiluoto site in Finland 2003–2007*
- In Posiva's construction licence application for a spent fuel repository at Olkiluoto (2012), KBS-3H design variant was described as a potential alternative
- Ongoing: KBS-3H safety evaluation for Olkiluoto 2014–2016

* SMITH, P. et al., Safety Assessment for a KBS-3H Spent Nuclear Fuel Repository at Olkiluoto - Summary Report, POSIVA 2007-06, Posiva Oy, Olkiluoto (2007)

Δ

Components of KBS-3H deposition drift

Posiva's VAHA system

- Posiva's requirement management system
 VAHA* launched in 2007 (for KBS-3V)
- Five levels of requirements:

Level 1: Stakeholder requirements Level 2: System requirements (including safety functions) Level 3: Performance targets and target properties Level 4: Design requirements Level 5: Design specifications

* VAHA = "Vaatimusten Hallinta", i.e. "Requirements Management" in Finnish

Level 1/Stakeholder requirements

- Level 1 requirements are legal and stakeholder requirements that arise from laws, decrees, decisions-in-principle etc.
- Identical for both KBS-3V and KBS-3H
- Example: "The geological characteristics of the disposal site shall, as a whole, be favourable to the isolation of the radioactive substances from the environment." (L1-STH-26) based on Government Decree on the safety of disposal of nuclear waste 12 §

Level 2/Safety functions of KBS-3H barriers

- The development of long-term safety requirements for KBS-3H starts by defining the release barriers of the system:
 - Canister
 - Buffer (in the supercontainers and in the distance blocks)
 - Filling components
 - Compartment plugs and drift plugs
 - Closure
 - Host rock

Level 2/Posiva's safety concept

Safe disposal										
Long-term isolation and containment										
ы Б	Re	Retention and retardation of radionuclides								
Favourable near-field conditions for the caniste	Slow transport in the geosphere	Slow release from	the spent fuel matrix		Slow diffusive transport in the buffer		Proven technical quality of the EBS			
Favourable, predictable bedrock and groundwater conditions				Well-charactericed material properties						
Robust system design										

6/17/2015

SAANID & RIEKKOLA DY

Level 3/Performance targets

- Performance targets (PT) are derived from the safety functions and the expected loads during the long-term evolution
- PT is a quantitative criterion indicating the fulfilment of a barrier safety function,
 - e.g. mechanical strength of the canister
- The verification (i.e. the fulfilment of the PT) is assessed (via modelling) in the performance assessment
- A performance target is not a requirement, i.e. it does not need to be fullfilled at all times
- The performance targets drive the design requirements

10

Performance targets - Example (preliminary):

Host rock (ROC) Level 3 (L3)

ID	Level 3 - Subsystem Requirements - Host Rock (KBS-3H)	Reference	Section in this report
L3-ROC-15 H	Groundwater at the repository level shall have limited salinity so that the buffer and filling components will maintain a high enough swelling pressure. Therefore, in the future expected conditions the groundwater salinity (TDS, total dissolved solids) at the repository level shall be less than 35 g/I TDS. During the initial transient caused by the construction activities salinities up to 70 g/I TDS can be accepted.	cf. Posiva 2012, L3- ROC-15	6.3.2

SAANID & RIEKKOLA DY

6/17/2015

Levels 4 and 5/Design requirements and specifications for KBS-3H

- Design requirements and design specifications apply to the initial state; requirements must be verifiable during manufacturing and installation
- Level 5 is the most detailed level → more differences between KBS-3V and -3H than at higher levels
- Supercontainer shell is not a barrier and has no long-term performance targets, but some design requirements and specifications can be derived from the performance targets of (mainly) the buffer

Challenges in the KBS-3H requirement development process (1/2)

Significant iteration needed

SAANID & RIEKKOLA DY

CONSULTING ENGINEER

Challenges in the KBS-3H requirement development process (2/2)

- The regulatory requirements are themselves evolving along the development of the repository programme; requirement development work is thus "shooting at a moving target"
- Close co-operation is needed (i) between longterm safety, design and implementation, (ii) among barrier-specific experts, and (iii) with the regulator
- Requirements are a communication tool between various parties involved in the work

Thank you for your attention!

More information:

Annika Hagros, Saanio & Riekkola Oy annika.hagros@sroy.fi

Published KBS-3H reports: www.posiva.fi, www.skb.se

15