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Introduction / Authorities, DPC 

Competent authorities for package design 

approval procedure in Germany 

 Federal Office for Radiation Protection (BfS) 
(shielding and criticality safety) 

 BAM Federal Institute for Materials Research 

and Testing  
(mechanical, thermal, containment safety assessment and 

quality assurance program) 

 

Dual purpose casks in Germany 

 Interim storage and transport 

 Up to 21 PWR or 52 BWR fuel assemblies  

 Maximum average burn-up 65 GWd/tU  

 Closed by bolted lid systems  

(usually double barrier)  

 Metallic gaskets (elastomeric gaskets for 

testing) 
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Protection Goals 

Regulatory transport conditions (IAEA) 

 Routine conditions of transport (RCT) 

o Regular transport, no incidents 

 Normal conditions of transport (NCT) 

o Minor incidents 

o Test e.g.: 0.3 m drop test onto unyielding  

target 

 Accident conditions of transport (ACT) 

o Impact and thermal loads 

o Test sequence e.g.: 9 m free drop onto  

unyielding target + 1 m puncture drop +  

30 min. fire at 800 °C  

 

Compliance with: 

Activity release limits  containment analysis 

Maintain subcriticality  criticality safety analysis  
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9 m drop test 
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Spent fuel assessment 

Potential cladding failure  

 Activity release into cavity 

 Impact on: 

o Containment analysis (BAM) 

o Criticality safety (BfS, mechanical assumptions BAM) 

 

For assessment knowledge needed about: 

 Loads (e.g. by drop tests) passed via: 

 impact limiter  cask body  basket  fuel assemblies  fuel rods 

 

Complex mechanical interaction  limited knowledge 

 

 Material behavior, wide range depending on: 

Cladding alloy, operational and storage history, burn-up, oxidation, possible 

hydride reorientation, etc.  limited knowledge 

 

 BAM uses enveloping approaches! 
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Activity release criteria (IAEA SSR-6) 

o For NCT 10-6 A2 per hour, 

o For ACT 10 A2 per week for krypton-85, 

1 A2 for all other radionuclides 

 

Direct measurement of activity release not feasible  

 relation to equivalent standardized leakage 

rates 

 

 Cladding as first barrier of containment 

 Cladding breaches lead to:  

o Activity release into cask cavity  

(gas, volatiles, fine fuel particles) 

o Escape of gases and volatiles through potential 

leak in gasket possible  containment analysis 

 

 Assumptions for radioactive material in the cavity 

required! 

Containment analysis 

release of: 
- fission gas 
- volatiles   
- fine fuel   
  particles 

cladding 
breaches 
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Containment analysis  

BAM assumptions for radioactive material in the cavity 
 

 Failure rates of fuel rods 

o Normal conditions of transport (e.g. 0.3 m drop test) 

     3 %  for burn-up ≤ 55 GWd/tU (based on NUREG/CR-6487 report) 

 100 %  for burn-up ≤ 65 GWd/tU 

o Accident conditions of transport (e.g. 9 m drop test)  

 100 %  for all burn-up (based on NUREG/CR-6487 report) 

 Released fractions of fuel rod content 

o 15 % of fission gas 

o 0.02 % of volatiles 

 Source term (BfS) 

 

 Amount of released fissile products in cavity  

 

 Activity release calculation based on standard design leakage rates  

 of gasket 
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Assumptions for criticality safety analysis  

Impact on criticality safety 

(ACT, assumption of water in containment) 

 

 Expansion of lattice spacing  

(e.g. buckling of fuel rods during 9 m vertical drop) 

 increased moderation ratio 

 

 

 

 Fuel rod breakage  

(e.g. breakage of fuel rods during 9 m lateral drop) 

 fissile material in cavity 

 

 Limited data on mechanical behavior of fuel 

assemblies 

 simplified enveloping approach 
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Expansion of lattice spacing 
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Assumptions for criticality safety analysis  

Expansion of lattice spacing 

 9 m vertical drop test 

 Induced inertia forces usually higher than buckling forces 

 Dynamic buckling of fuel rods not predictable 

 Assumption of covering deformation state (unfavorable for 

criticality safety) 
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9 m vertical drop test Possible buckling Covering deformation 
state 

Example of PWR fuel response: 

 Input for criticality safety analysis (BfS) 
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Assumption for criticality safety analysis  
 

Fuel rod breakage 

 Estimation of fissile material in cavity 

 BAM assessment: 

o Deformation state  
(for 9 m drop) 

 fracture points of fuel assembly 
(mechanical approximation with beam theory) 

o Amount of released fissile material  

per fracture point 
(based on hot cell experiments) 

 

 Total amount of released fuel in cavity  

 

 

 

 

 Input for criticality safety analysis (BfS) 
Hot cell tests on fuel rods 

Source: Papaioannou et al:  

Jahrestagung Kerntechnik, 12-14 May 2009 
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Encapsulation of Defective Fuel Rods 

Defects on fuel rods during NPP operation 

 IAEA NF-T-3.6: “Management of  

Damaged Spent Nuclear Fuel” 

 IAEA NF-T-2.1: “Review of Fuel  

Failures in Water Cooled Reactors” 

 

 Fuel rods extracted and separated 

 Encapsulation for transport and storage  

 

Encapsulation Types: 
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Source: AREVA 

Source: NF-T-2.1 

Single rod systems Multi rod systems  

principal sketch 
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Encapsulation of Defective Fuel Rods 

 Transport requirements: 

o Established inside of licensed spent fuel packages 

o Package design not affected negatively 

 Similar mechanical behavior as fuel assemblies 

 

 Challenges: 

o Different sealing system (usually permanent by welds) 

 Drying, sealing and tightness testing after loading as part of the 

approval process 

o Higher stiffness than fuel assemblies 

 Damping structures required 

 

 Advantages: 

o Well-known mechanical characteristics  

 Precise prediction of the encapsulation behavior under transport 

conditions 
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R & D 

Collaboration of BAM with Institute for Transuranium Elements (ITU)  
Karlsruhe, Germany 

 Motivation: Knowledge gap of material behavior of (high burn-up) fuel rods 

 Hot cell facilities at ITU  Joint proposal 
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Source: ITU 

Pressure monitoring  
(leakage detection) 

Loads up to pressure fall 

Quasi-static 3-point-bending test of fuel rod segments (pressurized) 

force measurement 

Displacement measurement 

 Comparison with loads of 0.3 m drop test 

 Extension to ACT currently under discussion 

 Cold testing has started! 
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Conclusions 

 

 

 BAM as one of two competent authorities for package design approval 

procedure in Germany 

 

 Spent fuel assessment for transport packages 

o Limited knowledge about spent fuel behavior (esp. high burn-up) 

 enveloping approaches needed 

o BAM approaches for  

 Containment assessment 

 Assumptions for criticality safety analysis 

 Encapsulations of defective fuel rods 

 

 R&D  

o Cooperation BAM/ITU 

o 3-point bending test of pressurized spent fuel rods 
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