Challenges in Developing the Basic Design of the KBS-3 System into a Qualified and Industrially Viable Operation

Johan Andersson Tiina Jalonen

Presented at International Conference on the Management of Spent Fuel from Nuclear Power Reactors: An Integrated Approach to the Back End of the Fuel Cycle, IAEA Headquarters, Vienna, Austria, 15–19 June 2015

POSIVA

Introduction

- Programs for final disposal of spent nuclear fuel similar in Sweden and Finland
- Extensive cooperation countries over the years
 - KBS-3 concept in common
- Swedish Nuclear Fuel and Waste Management Co. (SKB)
 - License applications in 2011 for a final repository at Forsmark, Sweden.
 - Currently reviewed
- Posiva, Finland
 - STUK's statement on construction license application just published
- Soon a stage of final design and implementation
 - cooperation will be deepened, aiming when possible for the same technical design.

Posiva's 40 years' effort

STUK's review of Posiva's application

- Green light for next step clear statement of safety!
 - Along with SKB in Sweden, Posiva is a forerunner in arguing that a repository for spent nuclear fuel in crystalline basement rocks will be safe. Both organizations have adopted the same, KBS-3 disposal concept (with much common development work), and both have compiled and presented a postclosure safety case to their national regulatory authorities within a year of each other.
 - Based on our review, STUK concludes that Posiva provides, overall, a clear and credible case that the proposed repository will be safe and will meet our regulatory requirements. The safety case is also in accordance with international best practices.
- Work needed before operational license and some already before construction of deposition tunnels
 - In STUK's opinion there remains a need to develop safety argumentation and methodologies further, and there is also a need to reduce some uncertainties regarding performance of the barriers.
 - No real surprises and most issues to resolve are in our common plans but a stress on the urgency to resolve
- The repository will remain passively safe after closure without monitoring or supervision of the site

Posiva/SKB common vision: "Operating optimized repositories and other facilities in 2030"

- Technical designs as well as the design basis and requirements shall be similar
 - Harmonize requirements
 - Canister design, welding and testing.
 - Development of manufacturing technology and design of production system.
 - Bentonite materials supply and production chain.
 - Buffer and backfill design, Deposition tunnel plug, (Installation techniques).
 - Detailed investigations and tunnel production
 - Research on long term safety and foundation of the ongoing technology development.
- Quality objectives
 - The joint work and documentation shall enable both parties to get the licenses needed
- Timely objectives
 - Detailed design targeted to be finished by 2018.
 - Joint optimized facilities 2030.
- Efficiency in costs and resources
- Potential to expand cooperation to design, construction and operation of facilities ongoing.

Joint work plan (JWP)

- Detailed technical design in time for the detailed design of the planned facilities
 - i.e. the encapsulation plant, the facility for buffer and backfill bentonite component production and the underground repository
- Aims for a common holistic view
 - identifies the various development efforts needed in relation to the program plan for the spent nuclear fuel program with regard to time and resources.
- The joint work agreed in the JWP will be implemented through Joint Projects

Design Requirements

- Design requirements (design premises)
 - Requirements which the KBS-3 facilities with their barriers must satisfy in order to ensure safety both during operation and after closure
- Harmonize the requirements ongoing since August 2013
 - Based on experience from the ongoing technology development work and the safety assessments
 - Cross-check between requirements for operation and post-closure safety
 - requirements that are practically achievable and verifiable for all considered barriers.
 - Strive for requirements that entail simple, robust and effective solutions.
- Common report ("KUPP/VAHA") planned end June 2015
 - Need to consider implications of STUK comments on safety functions

•		
	Design, production and initial state of the buffer Svena Kämpinsehanterng A8 December 2010	Technical Report TR-10-15
Safetv	posiva 2012-03 Case for the Disposal of	Sventa Kandra Subanking AB Banda Mar Fall Mar Song Bir (19) 54 Banda Mar Paras + 48 AS 95 00 SKE
Spent Nuclear Fuel at Olkiluoto - Design Basis 2012		
December 2012		
lkiluoto N-27160 EURAJOKI, FINLAND hone (02) 8372 31 (net.), (+358- ex (02) 8372 3808 (net.), (+358-		

Canister

- Overall aim to settle the detailed design and its fulfilment of all requirements
- Ongoing (or soon to be started) joint projects
 - Welding technology FSW
 - Design analysis
 - Sulphide project (corrosion aspects)
- Still discussed cooperation
 - Copper corrosion
 - Testing (NDT)
 - Insert manufacturing
 - Production system

 $2 \text{ Cu} + \text{HS}^- + \text{H}^+ \rightarrow \text{Cu}_2\text{S} + \text{H}_2$

Buffer and backfill

- Overall aim to settle the detailed design and its fulfilment of all requirements
- Ongoing (or soon to be started) joint projects
 - Requirement specifications for the bentonite materials
 - Pressing technology
 - Deposition tunnel plugs
 - Handling of water
 - Sulphide project (corrosion aspects)
 - Updated BBC design project
 - Common clay advisory group
- Still discussed cooperation
 - Additional R&D on clay issues
 - Production system and quality control

Deposition areas

- Ongoing (or soon to be started) joint projects
 - Earthquake assessment
 - Developing acceptance criteria for deposition holes based on geological and hydrogeological data
- Still discussed cooperation
 - DFN-modelling
 - EDZ assessment
 - Rock and underground construction advisory group

Spent fuel

- Joint fuel cooperation
 - A joint advisory group established.
- Areas discussed
 - Long-term criticality joint activity proposed with joint meetings and perhaps joint reports
 - Cr- and Al-doped fuel dissolution experiments
 - Safeguards issues
 - Fuel measurements Spire project
 - Data bases

Full scale testing and monitoring

- Ongoing (or soon to be started) joint projects
 - A few full scale buffer tests
 - Plug tests (DOMPLU/POPLU)
 - Joint planning of FISST
 - KBS-3H multipurpose test
 - Plans for monitoring the EBS (part of EU project Modern 2020)
- Still discussed cooperation
 - What tests to conduct and to what extent they should be mutual
 - Cooperation on technical equipment

Conclusions

- License applications for a final repository for spent nuclear fuel at Forsmark, Sweden, and at Olkiliuoto, Finland
 - a technically feasible reference design and site-adapted layouts presented
 - shown to comply with the regulatory acceptance criteria in the respective countries.
 - Clear statement from the Finnish authority (STUK). Statement from Swedish authority (SSM) pending
- Detailed designs adapted to an industrialized process designed to fulfilling specific requirements on quality, cost and efficiency remain to be developed.
 - Implementation cooperation will be deepened, aiming when possible for the same technical design.
 - Plans for these common developments are now being made jointly by the two companies.

