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A Perspective from Decades of Repository ([ .
Science and Engineering

= Repository programs in multiple nations

= Belgium, Canada, China, Czech Republic, Finland, France, Germany, Japan, Korea,
Spain, Sweden, Switzerland, United Kingdom, United States....

= |nternational collaboration throughthe International Atomic Energy Agency and the
Nuclear Energy Agency of the Organisation for Economic Cooperation and
Development

= Detailed safety assessments have been published for multiple disposal
concepts, e.g.,
= Switzerland: Opalinus Clay, 2002
= France: Dossier 2005 Argile, 2005
= USA: Yucca Mountain License Application, 2008
= Sweden: Forsmark sitein granite, 2011

First order conclusions
There are multiple approaches to achieving safe geologic isolation

Estimated long-term doses are very low for each of the disposal
concepts that have been analyzed in detail

Safe isolation can be achieved for both spent fuel and HLW
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Multiple Concepts for Geologic Disposal
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How do Repositories Achieve Safe Isolation?

Overall performance relies on

Natural barriers multiple components; different
preventofrdelay 'ﬂ]} disposal concepts emphasize
water from : -
reaching waste —— different barriers
form barriers prevent ‘ﬁl
or delay water
from reaching Slow
waste form degradation of m
waste form limits
release to water Near Field:
water chemistry ﬁl
A limits aqueous
W concentrations Natural and
ch,i,e engineered
deca barriers prevent

or delay transport
of radionuclides
to the human
environment

Isolation mechanisms may
differ for different nuclides in
different disposal concepts
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How does the Waste Form Affect the
Repository?

= Repository design and operations
= Total volume of waste
= Size and mass of packages
= Thermal considerations
" |mpacts on estimates of long-term dose

= |nitial radionuclide inventory emplaced in the repository

= Waste form degradation and rate of radionuclide mobilization




Waste Volume Considerations h) =,

= Volume of SNF and HLW

. . . . Relative Amounts of SNF in Storage as of 2007
requiring disposal is a

function of the national o
program -~
= Size of program o
= Fuel cycle choices o
= Treatment and packaging o | ‘ . . ‘ . .

= Volume of SNFand HLW is a
factor in determining
repository cost

Data in thousands of metric tons. Source: Feiveson etal., 2011

Programmatic decisions that affect the volume of waste
requiring geologic disposal vary from nation to nation



Waste Volume Considerations (cont.) &,

= Volume of HLW is process-dependent

= Existing processes can achieve 3-4x reductions in disposal volume relative to
used fuel, including packaging

= upto 13 X with 100-yr aging period [van Lensa et al., 2010, table 7.1]
= Advanced processes may achieve lower volumes of HLW

* Thermal output, rather than waste volume, determines
loading density and overall repository size

= Thermal output of HLW can be engineered over a wide range, correlates
inversely to volume without separation of heat-generating radionuclides

= Reductionsin the volume of waste requiring deep geologic
disposal will reduce total repository cost

= Volume of low-level waste also contributes to total cost

= Selection of optimal volume and thermal loading criteria will
depend on multiple factors evaluated across entire fuel cycle
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Thermal Considerations

Repository temperature constraints Heat Generating Nuclides

are design-specificand may have
considerable flexibility
= For disposal concepts that rely on i ;\\ —— |
clay backfill/buffer '§ I e
= Peak temperatures below boiling at \
the waste package surface i = \x -
= For salt disposal concepts ) w\ \
= Peak temperatures in salt below \ N \“',\ N l: ‘
200° C S e
= For ventilated disposal concepts T Blachte; Yoare
without backfill Wigeland, RA., T.H. Fanning, and EE. Morris, 2006, “Separations
and Transmutation Criteria to Improve Utilization of a Geologic
= Peak temperatures may be dictated Repository,” Nuclear Technology v. 154, Figure 1

by material properties of host rock
or engineered barriers




Options for Achieving Thermal Objectives

= (QOperational Options

= Aging

= Ventilation

= Load management
Repository Design

= Size of waste packages

= Spacing between packages

= Thermal properties of engineered
materials

Modifications to Waste Forms

= Decreasing density of fission-product

and actinide loading

= Separation of heat-generating
isotopes

Power per Unit Waste Volume (W/m?3)
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Example Thermal Modeling Result: i) S
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Managing Peak Temperature through Canister Size and Decay Storage

Decay Storage Needed to Meet WP Surface Temperature Limits vs.
WP Size or Capacity (PWR Assemblies; 60 GWd/MT Burnup)

Temperature limits based
on currentinternational
and previous U.S.
concepts:

= 100°C for clay buffers and

clay/shale media (e.g., SKB
2006)

= 200°C for salt (e.g., Salt
Repository Project, Fluor
1986)

Final temperature
constraints will be site- and
design-specific
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Surface storage time (y)

" 100°C limit ~—— f |
L Clay 4 125°C limit - 2

' 150°C limit

100°C limit
: 125°C limit + Granite

150°C limit

-
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Number of assemblies

Thermal conductivity for all media selected at 100 C.

Source: Greenbergetal. 2012




Example Thermal Modeling Result: i)
Managing Peak Temperature through Ventilation and Spacing in Shale

= Packagessize 21-PWR; burnup 40 GWd/MT; V= 90%

= Ventilation varied 50-250yr, after 50 yr surface storage
= Drift spacing for 50-yr ventilation varied 30-50 m
= Effect from ~2X drift spacingis greater than ~3X UNF age at closure

o _ Ventilation Drift Peak Rock Peak
Wall T vs Ventilation Duration, 21-UOX . . .
Clay, 40 GWd/MT, 50 yr Storage, Veff = 90% Period Spac Ing Tem P. Time
180 (yr) (m) (°C) (yr)
£ 160 ——
R 250 30 127.6 659
g 120 ’//;,""— —\/entilation time= 250y
g 1‘;3 ——Ventilation time= 200y 200 30 134.3 602
% 60 ==\/entilation time= 150y 150 30 1420 518
E 40 [’ ==\/entilation time= 100y
5w N 100 30 152.0 424
€ g «==\/entilation time= 50y
0 200 400 600 800 1,000 50 30 167.4 322
Time out of Reactor (years)
50 40 141.3 349
50 50 124.2 322

Source: Hardin etal. 2012
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Impacts on Estimates of Long-Term Dose Lf-

Total radioactivity of SNF is

i - Million-year radionuclide inventory for US SNF
dominated by actinides and ron-y ionuclide inventory
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Contributors to Total Dose in a Diffusion- ) e,
Dominated Disposal Concept

Laboratories
Mined Repository in Opalinus Clay (Switzerland)
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NAGRA 2002, Project Opalinus Clay Safety Report: Demonstration of
disposal feasibility for spent fuel, vitrified high-level waste and long-lived
intermediate level-waste (Entsorgungsnachweis), Technical Report 02-05,
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Contributors to Total Dose in a Disposal Concept 7 s,
with Advective Transport in the Far Field

Laboratories

s oo | ' Disposalin fractured granite at
a7 0ot the Forsmark Site, Sweden
Se79  (0.013) [ Dose comesponding to risk limit ———————————-—|
10" Fl——pb210  (0.0059) 1
N, o Long-term peak dose
——NDS4  (0.0017) dominated by Ra-226
1 H——Tota (0.18) i

Once corrosion failure
occurs, dose is primarily
controlled by fuel
dissolution and diffusion
through buffer rather than
far-field retardation

1001 |

Mean annual effective dose (pSv)

1002 L

103 . 1 MR |

Time (years)

Figure 13-18. Far-field mean annual effective dose for the same case as in Figure 13-17. The legends are
sorted according to descending peak mean annual effective dose over one million years (given in brackets
In uSv).

SKB 2011, Long-term safety for the final repository for
spent nuclear fuel at Forsmark, Technical Report TR-11-01
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Reduce Long-term Risk by
Extending Waste Form Lifetime?

= Example from preliminary 1,000 4 Background radiaton
spent fuel disposal 100 /-J'
analyses at Forsmark, ooyt ____ || ___ I i{
Sweden EI- —— Geosphere total; Fuel rate 10~ *fyr I':;II;
. . . 2 138 Geosphera total; Fuel rate 10~ 5yr ,'Illl
= Fractionaldissolutionrate & {|= Goompor o ot 10y | ;f/ i
] 1 | == Geosphere total, probabilistic base case I
ra nge 10-6/yr tO 10-8/yr E 01 __ — Geoihale total; Eual rate I[J'?f}'r Ilymf
1 | == Geosphere total; Fuel rate 107%
= Corresponding fuel § ool = .
lifetimes: ~ 1 Myr to 100 = v
Myr 0.001 § 1
= Dissolutionrates for so001 | !
oxidizing conditions (not 1,000 10,000 100,000 1,000,000

anticipated), up to 10-4/yr Time [years)

Figure 10-44. Sensitivity of the base case resulf to the fuel dissolution rate. Semi-correlated hydro-

- . .
Uncertal nty In fuel geological DFN model for Forsmark. 1,000 realisations of the analytic model for each case.
dissolution rate
contri bUtES to uncertal nty Source: SKB 2006, Long-term Safety for KBS-3 Repositories at Forsmark

in modeled total dose and Laxemar—a First Evaluation, TR-06-09, section 10.6.5

estimates Also, SKB 2006, Fuel and Canister Process Report for the Safety

Assessment SR-Can, TR-06-22, section2.5.5
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Observations on Deep Borehole Disposal ) e,

= Potential for long-term F
isolation is excellent, but
further R&D is needed

" Primary constraints defined

by borehole geometry
= Standard drilling technology
allows up to ~45 cm bottom

hole diameter
= With packaging, precludes disposal
of typical intact PWR assemblies [Lcoment |
= Other fuel forms limited to single-
assembly disposal packages

L 36" hole, 30" casing
@457 m

28" hole, 24" casing

Portcollar allows cement

= Thermal considerations o e e l l
. .o . 22" hole, 18-5/8"
simplified by small packaging /. | cosing @ 3000m
Deep borehole disposal may be viable for S — -
small volumes of small-diameter waste @ w== penae | ) -

casing @ 5000 m

Concept has not been demonstrated
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Conclusions

Multiple disposal concepts have the potential to achieve permanent
isolation of spent nuclear fuel

= Estimated long-term doses are very low for each of the disposal concepts
that have been analyzed in detail

= Thermal load can be managed through design and operations
= All disposal concepts call for limiting near field temperatures
= Radionuclides contributing to dose vary for different disposal concepts

= Water chemistry (redox state) and transport mechanism (advection vs.
diffusion) matter

= Long-lived fission products (i.e., I-129) are likely to be of greatest importance
= Joint optimization of spent fuel management and disposal criteria

requires consideration of multiple factors evaluated across entire fuel
cycle
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