Managing the foodchain – radiation protection and societal aspects

Astrid Liland

IEM6, Vienna, 17-21 February 2014

www.nrpa.no

Issues at stake

- Contamination by long-lived radionuclides is a societal problem of long duration
- Need to control the intake of radionuclides to below a safe level
 - 20-100 mSv total dose, acute or per year, in emergency phase
 - 1-20 mSv/y total in the long run (existing exposure situations)
- Food restrictions and/or countermeasures will be mandatory
- How to elaborate a viable strategy for managing the food chain in the long term?
- How to gain public acceptance and understanding?

Permissible levels (or guideline levels or regulation values) for radionuclides in food products - examples

Radionuclide	Product	Codex Guideline levels	IAEA Operational intervention levels	EC Maximum permitted levels ¹⁾	USA Guidance levels/ Derived intervention levels ²⁾
¹³¹ I	Milk/dairy products	100	3000 ³⁾	500 ⁴)	170
	Other foods	100	3000	2000	170
¹³⁴ Cs+ ¹³⁷ Cs	Milk/dairy products	1000	¹³⁴ Cs: 1000 ¹³⁷ Cs: 2000	10004)	1200
	Other foods	1000	¹³⁴ Cs: 1000 ¹³⁷ Cs: 2000	1250	1200

¹⁾ EC has maximum permitted levels for infant food of 150 and 400 Bq/kg for ¹³¹I and ¹³⁴Cs+¹³⁷Cs, respectively. Furthermore, EC give a list of minor foodstuffs to which the maximum permitted levels do not apply.

²⁾ Applicable to foods as prepared for consumption. For dried or concentrated products such as powdered milk or concentrated juices, adjust by a factor appropriate to reconstitution, and assume the reconstitution water is not contaminated. For spices, which are consumed in very small quantities, use a dilution factor of 10.

³⁾ Also for drinking water.

⁴⁾ Also for "liquid foodstuffs".

Comparison to national permissible levels

Radionuclide	Product	EC Maximum permitted levels ¹⁾	USA Guidance levels/Derived intervention levels ²⁾	Russia, Ukraine, Belarus (from 2010)	Japan Provisional regulation values 2011	Japan limits from 2012
¹³¹ I	Milk/dairy products	500 ⁴)	170		300 ³⁾	
	Other foods	2000	170		20005)	
¹³⁴ Cs+ ¹³⁷ Cs	Milk/dairy products	10004)	1200	100	200	50
	Other foods	1250	1200	40-500 ⁶⁾	500	100

¹⁾ EC has maximum permitted levels for infant food of 150 and 400 Bq/kg for ¹³¹I and ¹³⁴Cs+¹³⁷Cs, respectively.

²⁾ Applicable to foods as prepared for consumption.

³⁾ Also for drinking water.

⁴⁾ Also for "liquid foodstuffs".

⁵⁾ Following the Fukushima accident.

⁶⁾ Values for different food categories ranging from 40 Bq/kg in baby food and bread, to 500 Bq/kg in mushrooms

The Norwegian case after the Chernobyl accident

- From denial to confusion to management
- Highly contaminated areas coincided with pasture areas → meat and milk very contaminated
- Wild foodstuffs highly contaminated

Some measured values, total caesium

1986

- Goat's milk: 2890 Bq/kg
- Cow's milk: 1160 Bq/kg ۲
- Freshwater fish: 30 000 Bq/kg ۲
- Lamb: 40 000 Bq/kg ۲
- Reindeer: 150 000 Bq/kg ٠
- Mushrooms: 1-2 MBq/kg •

Changing permissible levels in Norway, Bq/kg

Food product	May 1986	June 1986 ¹³⁴⁺¹³⁷ Cs	Nov. 1986 ¹³⁴⁺¹³⁷ Cs	July 1987 ¹³⁴⁺¹³⁷ Cs	1994 ¹³⁴⁺¹³⁷ Cs	Today ¹³⁴⁺¹³⁷ Cs
Basic foodstuffs	1000 for ¹³¹ I 300 for ¹³⁷ Cs	600				600
Milk and infant food	-	370				370
Reindeer meat	-	-	6000		3000	3000
Game and wild freshwater fish	-	-	-	6000	3000	3000

Meat from semi-domesticated reindeer

- Free ranging animals, natural pastures only
- Difficult to implement countermeasures
- The Samis has a strong spiritual and cultural connection to the reindeer and the nature → their existence was threatened
- Low average consumption by Norwegians ~0.5 kg/y
- High consumption by Sami people > 50 kg/y

Food bans and impacts

- Efficient for removing contaminated food from the market
- Will often be mandatory in the early phase
- But
 - Generates a lot of waste
 - Costly (compensation to producers, measurement campaigns, waste disposal, lost market value)
 - Stop in production changes the cultivated landscape
 - Stop in harvesting changes the ecological balance (eg. wild boar in Fukushima prefecture)
 - Loss of production knowledge
 - Import/export disturbed
 - Food shortage?
 - Malnutrition?
 - Very unsatisfactory for the farmers, fishermen, hunters

Countermeasures used in Norway

- Elevated permissible levels for reindeer, game and freshwater fish
- Monitoring of radiocaesium in animals before slaughter ("live monitoring");
- Clean feeding of animals before slaughter;
- Caesium binder (Prussian blue) in concentrates ,salt licks and rumen boli to prevent absorption of ingested radiocaesium in the animals;
- Change of slaughter time (in reindeer husbandry); and
- Dietary advices and monitoring of internal contamination.

Prussian blue efficiency

- Prussian blue (a caesium binder) added to concentrates, salt licks and boli
- Reduces the uptake of Cs from the animals' gut
- Efficiency between
 50 and 80 %

Live monitoring

3" Nal special software

- Measures directly the contamination of meat in Bq/kg of Cs-134+137
 - Basis for decision on slaughter or clean feeding

Dietary advice and WBC of Samis

- Advice to reduce levels to below 600 Bq/kg of Cs-134+137 for reindeer consumed in the Sami household
- Compensation payed to Sami huseholds to buy food from less contaminated areas or to clean feed their animals
- Invited to wholde body counting at regular intervals
 - Both measurement and dialogue

WBC results from ongoing programme

Averted doses due to countermeasures

- Change in slaughter time
- Clean feeding
- Dietary vigilance

Costs of countermeasures in Norway

- Total costs ~90 million € since 1986 (measurements, mangement, countermeasures, compensation, research)
- ~1.8 million € still spent annually
 - 1.25 million € for sheep, goats, cows, foodstuffs
 - 0.55 million € for reindeer, reindeer herders, WBC
- Sheep on clean feeding 1986-2010
 - ~2,2 millions animals
 - Total costs: 28,5 million €
 - Value of the saved meat 350 million €

Persistence of the contamination, reindeer

Persistence of the contamination, reindeer

Socio-ethical aspects

- Cultural heritage
 - Traditional land use
 - Personal value of farming, hunting and fishing
 - Value of regional food

Syndicat Interprofessionnel de Défense du Camembert de Normandie

Societal aspects

- Food bans / destruction of foodstuffs
 - Very unrewarding for the farmers
- Quality of food
 - Local monitoring stations valuable
- Consumers trust
 - Information, understanding and independent measurements

Empowering the producers

- Depending on contamination, land use, environmental factors etc. the producers could be facing decades of problems
- Food bans and production prohibition is not viable in the long term
- A countermeasure strategy should be elaborated with the producers
- Experts needed to assist local communities in developing strategies and local monitoring stations
- Active participation in mitigating actions and access to local monitoring stations empowers the producers → less psychosocial stress
- Compensation only to cover the costs associated with implementation of countermeasures

Challenges

- Public perception ٠
- The differing values ۲
- Harmonisation across borders •
- Persistence of the contamination ۲
- Elaboration of strategy with the stakeholders ۲
- Need to change strategy with time ٠
- Continued information and communication •

References

- Liland, A. & Skuterud, L. (2013). Lessons Learned from the Chernobyl Accident in Norway. In D. Oughton & S. O. Hansson (Eds.), *Social and Ethical Aspects of Radiation Risk Management*. Elsevier Science, 157-176. ISBN: 978-0-08-045015-5, ISSN: 1569-4860.
- Skuterud L, Thørring H. Averted doses to Norwegian Sámi reindeer herders after the Chernobyl accident. Health Physic 2012; 102(2): 208-216
- Liland, A., Lochard, J., Skuterud, L. How long is long term? reflections based on over 20 years of post-Chernobyl management in Norway. Journal of Environmental Radioactivity 100 (2009) 581-584. doi:10.1016/j.jenvrad.2009.04.006
- Gjelsvik R. Radioactivity in sheep meat, cow and goat milk, 1988-2004.
 StrålevernRapport 2005:10. Østerås: Norwegian Radiation Protection Authority, 2005. Language: Norwegian. (Soon to be updated with data until 2013 included).

astrid.liland@nrpa.no