

Short- and long-term ecological half-lives of radiocesium in marine populations

Kayoko Iwata, Keiko Tagami, Shigeo Uchida National Institute of Radiological Sciences, Office of Biospheric Assessment for Waste Disposal

Background

- The FDNPP accident caused direct and atmospheric discharges of radionuclides (RN)—i.e. Cs-137 <Air: 8.8-15 PBq^{*1-4}; Direct: ~3.5 PBq^{*5}>
 - -Cs-137 contamination in marine life

*1) Nuclear Emergency Response Headquarters, 2011 *2) Chino et al. 2011 *3) Morino et al. 2013 *4) National Institute of Environmental Studies, 2013 *5) Tsumune et al. 2012

- Radionuclides with relatively long physical half-lives
 - —Cs-137 (≈ 30 yrs.)
 - Possible continuance of food contamination
 - Concern about internal exposure for consumers over a long period
- Importance of a long-term contamination evaluation
 - -In natural ecosystems
 - Ecological half-life

♦ a valid index of food contamination & its long-term trend estimation

-Not much data available in the actual environment

Definition

Ecological half-life (T_{eco})

Time required for 50% decline of radionuclide in a **population** in a natural ecosystem

Biological half-life (T_b)

Time required for the biological elimination of 50% of radionuclide from <u>a living body (individual)</u>

Fish Marine Amazon Aqua Tropical Export. 9 Nov. 2013. WALLSAVE. Web. 24 Dec. 2013.

Amphiprion ocellaris. 2013. All Free Clipart. Web. 24 Dec. 2013.

Objectives

Data source

The food monitoring data publicly shared on the website of Ministry of Health, Labour and Welfare of Japan (MHLW)*

Particularly, samples caught off the south coast of Pref. Fukushima (Iwaki city)

Maps from Google Earth

Stu

Physiculus maximowiczi. July 2003. Izuzuki Diver. Web. 24 /eb. 24 Dec. 2013. Dec. 2013.

Species	Size (cm)	Main Diet	Trophic level
Abalone	oval: 5-20 by 3-17	seaweed; kelp	1º consumer
Sakhalin surf clam	> 10	phytoplankton; detritus	1º consumer
Marbled flounder	~ 45	polychaetes	2º consumer
Brown hakeling	~ 30	polychaetes; crustacean; molluscs	2º consumer
Gurnard	> 30	crustacean; small fish	3º consumer
Whitespotted conger	M: ~40; F: ~90	polychaetes; crustacean; small fish; dead materials	3° consumer/sc

conger

consumer/sca venger

Estimation of T_{eco} ~two-component exponential decline~

Short- & long-term components

 \rightarrow the phenomena have been shown in the previous studies⁽¹⁾⁽²⁾

- 1) Plot all the valid data values
- Draw the best fit to 2 (fast & slow) exponential declines
- 3) Estimate T_{eco} by ln 2 λ_{eco}^{-1} :
 - λ_{eco}= loss rate of RN activity in a population in the wild

(1) Jonsson, B.; Forseth, T.; Ugedal. O. Chernobyl radioactivity persists in fish. Nature. 1999, 400 (417).

(2) Smith, J.T.; Comans, R. N. J.; Beresford, N. A.; Write, S. M.; Howard, B. J.; Camplin, W. C. Pollution: Chernobyl's legacy in food and water. *Nature*. **2000**, 405 (141) **Results**

10

2⁰

3°

Results

Species	T _{eco} : short	T _{eco} : long	Before the peak (days)	Trophic level
Abalone	36	202	N.A.	1º consumer
Sakhalin surf clam	37	99	N.A.	1º consumer
Marbled flounder	74	489	400	2º consumer
Brown hakeling	118	767	310	2º consumer
Gurnard	109	445	N.A.	3° consumer
Whitespotted conger	111	479	450	3° consumer/scaveng er

Trophic Levels

- * Shellfish: univalve/ bivalve \rightarrow food selection matters?
 - Filter feeder may have lower assimilation rate and/or higher metabolism than other herbivores
 - -Monitoring data reached under DL relatively fast \rightarrow difficulty in estimating long-term T_{eco} accurately
- * Fish:
 - —Short-term T_{eco} were relatively similar & longer than that of shellfish
 - —Long-term T_{eco} showed more moderate decline than those of shellfish

Conclusion

- * Time-lag before the Cs-137 concentration peak in some populations
- Short-term T_{eco} became longer in populations at higher trophic levels (fish>shellfish)
- * Long-term T_{eco} varied among fish populations
 - The ecology of marine populations is complicated
 - Data under DL in the latter monitoring period can cause overestimation

To find out the trend of Cs-137 decline in marine biota
Necessity to analyze as many populations as possible
Further understanding of each niche

Thank you for your attention

*This work was partially supported by the Agency for Natural Resources and Energy, the Ministry of Economy, Trade and Industry (METI), Japan.