LONG RANGE TRANSPORT OF RADIOACTIVITY FROM FUKUSHIMA - MODELLING OF AIR MASS TRAJECTORIES

Alexandra Ioannidou¹

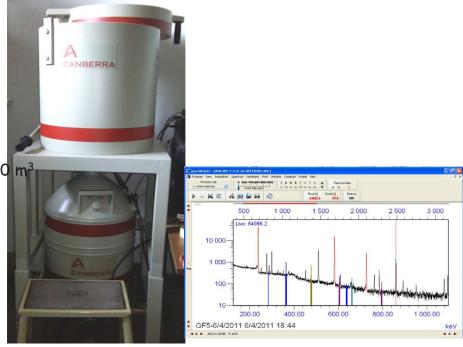
M. Manolopoulou¹, S. Stoulos¹, E. Vagena¹, E. Giannakaki², E. Manenti³, L. Gini³, F. Groppi³

¹Aristotle University of Thessaloniki, Greece,

¹Aristotle University of Thessaloniki, Greece, Nuclear Physics Division, 54124 Thessaloniki, Greece ²Finnish Meteorological Institute, Kuopio Unit, Kuopio, FI-70211, Finland FACCOLTAI ⁸L.A.S.A. Lab, INFN and Universita Degli Studi di Milano, I-20090 Segrate (MI), Italy

HV air Sampler (Staplex TFIA-2)

Flow rate: 1.6-1.7 m³/min (60cfm)


Sampling duration: 23 h Total Volume: 2400-2700 m³

Air Volume Uncertainty (2σ) : 30-50 m³

Glass Fiber Filters TFAGF810

Very high retention of fine particles. 99.98% retention efficiency of 0.3 micron particles.

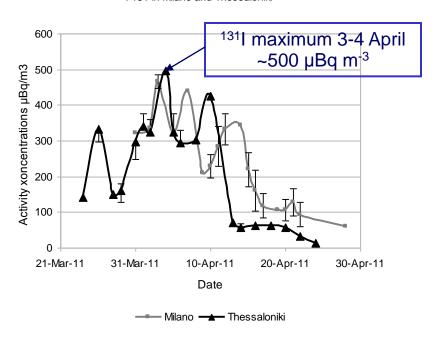
anta@physics.auth.gr

17-21 Feb 2014, Vienna, Austria IAFA-CN-224

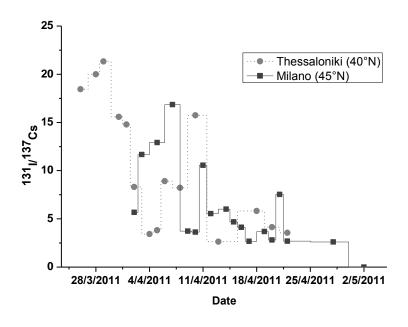
Activity concentrations of ¹³¹I, ¹³⁷Cs and ¹³⁴Cs in air over Milan

Date of sampling $\frac{131}{\mu Bq m^{-3}} \frac{137}{\mu Bq m^{-3}}$	¹³⁴ Cs µBq m ⁻³ 1	ratio	ratio
$uBa m^{-3} uBa m^{-3} u$	uBa m ⁻³ 1		
μ24 μ24	M2 4 III	$^{34}\text{Cs}/^{137}\text{C}$	s ¹³¹ I/ ¹³⁷ Cs
$31/03/11$ 322 ± 35 $< 29^a$	< 26 ^a	-	-
02/04/11 <u>335±89</u> 59±42	56±37	0.95	5.7
03/04/11	37±8	0.92	11.7
$05/04/11$ 323 ± 16 25 ± 9	27±9	1.09	12.9
$07/04/11$ 438 ± 28 26 ± 17	25±15	0.98	16.8
09/09/11 209±33 56±30	54±24	0.97	3.7
10/04/11 229±55 63±30	61±22	0.97	3.6
11/04/11 285±43 ^b 27±18	^b 23±14	0.90	10.6
12/04/11 333±73 60±38	56±30	0.94	5.6
14/04/11 343±48 57±26	54±23	0.95	6.0
15/04/11 220±58 47±27	42 ± 20	0.89	4.7
16/04/11 161±34 39±10	^b 13±7	0.33	4.1
17/04/11 118±27 44±17	31±13	0.69	2.7
19/04/11 107±30 29±16	40 ± 14	1.38	3.7
20/04/11 107±38 38±16	23±12	0.62	2.8
21/04/11 128±33 ^b 17±16	27 ± 14	1.59	7.5
22/04/11 94±46 35±16	< 11 ^a	-	(2.7)
28/04/11 ^b 60±35 ^b 23±16	$< 12^a$	-	2.6
$29/04/11$ $< 41^a$ < 11	33±14	-	-
$30/04/11$ $< 19^a$ $< 16^a$	< 12 ^a	-	-
$3/05/11$ $< 9^a$ 17 ± 16	22±14	1.34	-

 $^{134}Cs/^{137}Cs = 1$ Related to the burnup history of the nuclear fuel of the destroyed nuclear reactor


 131 I <500 µBq m⁻³

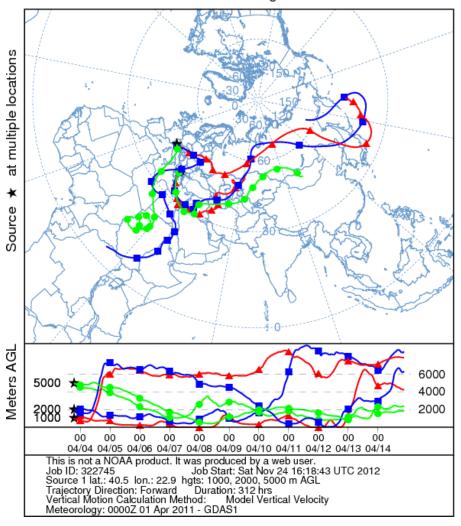
^a MDA


^b Critical Level

¹³¹I atmospheric concentrations

I-131 in Milano and Thessaloniki

131I/137Cs activity ratio in Milan (45°) and Thessaloniki (40°)



¹³¹I/¹³⁷Cs decrease with time

Reflects the different volatility, attachment and removal of the two isotopes during transportation due to their different physicochemical properties.

Back trajectories analysis

NOAA HYSPLIT MODEL
Forward trajectories starting at 1900 UTC 03 Apr 11
GDAS Meteorological Data

On April 3, 2011 at 19:00 UTC the back-trajectory analysis indicates the transport of air masses from Japan both in Italy and in Greece but at different arrival heights. As Fig. 8 shows the air masses started above Japan at around 2 km. In Italy the air mass moved down, travelled near the ground and arrived above Italy at height of 1 km. On the other hand, the air mass after being near the ground for almost 2 days rose to arrive at height of 2 km above Thessaloniki. Both transport pathways can explain maximum concentrations that were observed at the regions of study.

CONCLUSIONS

- The Fukushima plume was detected all over Europe
- The presence of more than one peaks of ¹³¹I and ^{137,134}Cs is an index that air masses continuously transferred from Fukushima, Japan till the end of April, 2011.
- > HYSPLIT backward trajectories interpreted the measured atmospheric concentrations
- > 131I and 137,134Cs isotopes were found above their detection limits in all environmental samples but very far below levels of concern