IAEA Vienna (CN 224) 20 February 2014

Overview of public exposures from major radiological events

André Bouville National Cancer Institute (retired), Bethesda, MD 20892 Email: Andre.Bouville@nih.gov

OUTLINE

- Introduction
- Scope of presentation
- Environmental releases
- Pathways of exposure
- Countermeasures
- Dose estimates
- Concluding remarks

Distribution of annual per caput effective doses in the U.S. in 2006

Source	%	Main component
Background	50	Rn and Tn (37%)
Medical	48	CT scans (24%)
Consumer	2	Cigarette smoking (35%)
Occupational	< 0.1	Navy nuclear power (51%)
Industrial	< 0.1	Irradiation from nuclear medicine patients (72%)

Total: 6.2 mSv y⁻¹ (NCRP 160; 2008)

Distribution of annual effective doses in the U.S.*

*NCRP Report 160

SCOPE OF THE PRESENTATION

COVERAGE

- Exposures resulting from large environmental releases of radioactive materials
- Focus on reactor accidents and nuclear weapons tests
- Dose estimates for local populations

History of nuclear power

- 1942-1962: Era of military uses
 - Use of nuclear weapons in Japan
 - Multiple atmospheric nuclear weapons tests
 - Large environmental releases: Hanford, Mayak
 - Accidents: Windscale, Kyshtym
- 1963-1979: Era of electricity generation
 - Development of nuclear power for civilian purposes
 - Accident: Three Mile Island
- 1980-to date: Era of critical review
 - Nuclear reactor accidents: Chernobyl, Fukushima
 - End (?) of atmospheric weapons testing

Categories of nuclear "events"

- Accidents:
 - <u>Reactor</u>: Windscale (1957), TMI (1979), Chernobyl (1986), Fukushima (2011)
 - <u>Other</u> : Kyshtym (1957), Goiania (1987)
- Nuclear weapons:
 - <u>Use</u>: Japan (1945)
 - <u>Testing</u>: Trinity (1945), Nevada and Kazakhstan (1950s), Marshall Islands (1950s)
 - <u>Pu production</u>: Hanford (1940s), Mayak (1940s)₈

ENVIRONMENTAL RELEASES

Accidental releases to the atmosphere (PBq)

	¹³¹ I	¹³⁷ Cs	⁹⁰ Sr	Other
REACTORS:				
Windscale (1957)	0.6	0.05	<0.001	²¹⁰ Po
TMI (1979)	0.001			¹³³ Xe
Chernobyl (1986)	1800	85	10	¹³⁴ Cs, etc.
Fukushima (2011)	160	15	0.14	¹³⁴ Cs, etc.
OTHER:				
Kyshtym (1957)		0.26	4.0	¹⁴⁴ Ce-Pr, etc.
Goiania (1987)		0.05		

Releases from the nuclear weapons industry (PBq)

	¹³¹ I	137 Cs	⁹⁰ Sr	Other
WEAPONS:				
Japan (1945)	160	0.22	0.14	All F.P.
Nevada (1950s)	5600	8	5	All F.P.
Global (1950-60s)	675000	950	620	¹⁴ C, etc.
Pu PRODUCTION:				
Hanford (air)	27		0.002	¹⁰³ Ru, etc.
Mayak (air)	40			
Mayak (water)		12	20	¹⁰³ Ru, etc.

Environmental releases (PBq)

	¹³¹ I	¹³⁷ Cs	⁹⁰ Sr
ACCIDENTS:			
- Reactor	2000	100	10
- Other		0.3	4
NUCLEAR WEAPONS:			
- Use	160	0.2	0.1
- Testing	700000	1000	600
- Pu production (air)	70		
(water)		10	20

Comparison of activities produced and released (PBq)

Radio- nuclide	Half- life	Fission (1 Mt)	Chernobyl (inv.)	Chernobyl (rel.)	Inv./ 1 Mt	Rel./ 1 Mt
¹³⁷ Cs	30 y	5.9	260	85	44	14
⁹⁰ Sr	29 y	3.9	220	10	57	2.6
¹⁴⁴ Ce	285 d	191	3,920	50	21	0.27
⁹⁵ Zr	64 d	921	5,300	84	5.8	0.09
¹⁴¹ Ce	32 d	1,640	5,550	84	3.4	0.05
¹³¹ I	8 d	4,210	4,800	1,760	1.1	0.4

PATHWAYS OF EXPOSURE

Exposure Pathways

PATHWAYS OF EXPOSURE

EXTERNAL IRRADIATION

- Direct radiation from the source
- Radioactive cloud
- Activities deposited on the ground

INTERNAL IRRADIATION

- Inhalation
- Ingestion

Exposure pathways

Event	Main pathways	Main radionuclides
Hanford, Mayak (air), Trinity, NTS, Kazakhstan, Windscale, Chernobyl	Ingestion (milk)	¹³¹ I
Japan	Direct radiation	²³⁵ U, ²³⁹ Pu
Kyshtym	External, ingestion	⁹⁰ Sr
Goiania	External, ingestion	¹³⁷ Cs
TMI	External	¹³³ Xe
Marshall Islands	Ingestion	¹³³ I, ¹³¹ I, ¹³² Te-I
Mayak (water)	External, ingestion	¹³⁷ Cs, ⁹⁰ Sr
Fukushima	External, inhalation, ingestion	¹³¹ I, ¹³⁷ Cs, ¹³⁴ Cs

Pasture-cow-milk pathway (¹³¹I)

Sources of animal milk in Kazakhstan

Cows

Goats

Camels

Sheep

. .

Horses

Estimated contributions to the thyroid dose (%) [Chernobyl; BY]

Pathway	Average contribution (%)	Range (%)
¹³¹ I ingestion	96	86 – 99
¹³³ I, ¹³² Te ingestion	2	0.3 – 9
¹³⁴ Cs, ¹³⁷ Cs ingestion	1	0.02 – 5
External irradiation	1	0.8 – 9

Fallout study: estimates* of internal and external doses in St. George, UT from event Harry (19 May 1953)

ant dose (mGy)	Adult dose
ernal irradiation	
840	51
25	5.0
8.8	2.0
7.6	1.3
1.1	0.5
	ant dose (mGy) ernal irradiation 840 25 8.8 7.6 1.1

External irradiation	
~10	~10

*provided by Lynn Anspaugh

Total body

Fukushima: reduction of doses from ¹³¹I

COUNTERMEASURES

COUNTERMEASURES

EXTERNAL IRRADIATION

- Direct radiation from the source: none
- Radioactive cloud: shielding, evacuation
- Activities deposited on the ground: shielding, decontamination

INTERNAL IRRADIATION

• Inhalation: shielding, KI

• Ingestion: control of foodstuffs production and consumption

Practical means to reduce the dose

- The dose from <u>external irradiation</u> is much lower for people staying indoors in basements than for those staying outdoors.
- The dose from <u>inhalation of radioiodines</u> is reduced by intake of KI pills before the passage of the radioactive cloud and by staying indoors.
- The dose from <u>ingestion of radioiodines</u> is also reduced by intake of KI pills, but a more efficient way is to abstain from eating contaminated foodstuffs.
- Evacuation from contaminated territories reduces the dose for <u>all pathways</u>.

Effectiveness of Chernobyl countermeasures

Countermeasures	US\$ per man-Sv	Area, time
	External dose	
Sheltering	0.02-1	Pripyat, 26-27 April 1986
Evacuation	1,000 – 15,000	30-km zone, April - May 1986
Relocation	130,000-500,000	Contaminated areas, 1990
	Internal dose	
lodine prophylaxis	0.02-1	April-May 1986
Restriction s on local foods	13,800-120,000	Bryansk Oblast, Russia, 1989

Evacuation/Relocation

Event	Year	Timing	Population size
Mayak (Techa)	1950-1951	Late 1951	7,500
Kazakhstan	1953	5 d - 2 h before test	3,300
Marshall Islands	1954	Within 3 d	227
Kyshtym	1957	Within 2 y	12,000
TMI	1979	Within a week	144,000
Chernobyl	1986	Within 10 d Within 1-4 mo	99,000 17,000
Fukushima	2011	Within a week	110,000

Time between intake of I-131 and KI (h)	Thyroid dose with KI (mGy)	Dose ratio to control group
0	0.6	0.026
8	1.5	0.07
16	3	0.13
24	3.1	0.14
36	15.6	0.68
48	15.4	0.67
Control group (w/o KI)	23	1

Mean I-131 thyroid doses (mGy) [Pripyat evacuees: inhalation doses]

KI pills	Mainly indoors	Often outdoors
Yes	45 (40)	115 (9)
No	96 (7)	301 (15)

DOSE ESTIMATES

How can dose estimates be compared?

- Collective effective dose commitment
- Truncated collective effective dose commitment
- Annual per caput effective dose
- Effective or organ dose to representative individuals
- Organ dose estimates from epidemiologic or dose reconstruction studies

Some influencing parameters

- Radionuclide characteristics (half-life and physicochemical form)
- Height of release and meteorological conditions
- Time of year (pasture season)
- Location and time after the accident
- Lifestyle and dietary habits of the exposed population; age
- Countermeasures

Fallout from nuclear weapons tests: variation of the exposure rate with time

Size of particles deposited decrease with increasing altitude of debris cloud, wind velocity, and distance downwind.

U.S. method 🛧

Russian method →

Critical model parameter is <u>fraction of</u> <u>fallout deposition</u> intercepted and retained by vegetation.

Wind patterns

Activities deposited on the ground

Chernobyl

Fukushima

NCI Estimated I-131 Deposition Density (Bq/m²) From all NTS Atmospheric Tests (1951-1962)

Dose estimates (mGy) for epidemiologic studies

Event	Epi study	# of subjects	Target organ	Median dose	Mean dose	Max. dose
A bombs	Life span	122,301	Many	1.8	105	>4,000
Hanford	Thy. CA	3,440	Thyroid	97	174	2,800
Mayak (water)	Leukemia	29,730	RBM	210	-	2,000
Nevada	Thy. CA	2,497	Thyroid	55	210	1,400
Kazakhstan	Nodules	2,994	Thyroid	-	349	10,000
RMI	All CA		Thyroid	-	124	9,200
Chernobyl (BY)	Thy. CA	11,732	Thyroid	230	580	33,000
Chernobyl (UA)	Thy. CA	13,204	Thyroid	190	680	42,000

Dose estimates (mGy): other events

Event	Group or individual	Target organ	Mean dose	Max. dose
Mayak (air)	Child born in 1947	Thyroid	2,300	
Kyshtym	1,054 early evacuees	Active marrow	570	
Windscale	Child	Thyroid	6	160
TMI	Critical group	All	2	
Goiania	129 (with internal contamination)	All	240	7,000
Fukushima	Children 0-15 y	Thyroid	2	35

Concluding Remarks (1/2)

- At the continental and global scales, radiation exposures from medical practices and background account for most of the per caput annual effective dose.
- At the local and regional scales, reactor accidents and the development, testing, and use of nuclear weapons have resulted in relatively large doses among population groups.

Concluding Remarks (2/2)

- Epidemiologic studies related to some of these "events" have been conducted or are in progress to establish or confirm radiation risk estimates.
- It is important to collect and archive all data and reports on these "events" for future reference.

Acknowledgments

Many thanks to Lynn Anspaugh Vladimir Drozdovitch Dunstana Melo Bruce Napier Steve Simon for their help and advice

+ thank you for your attention.