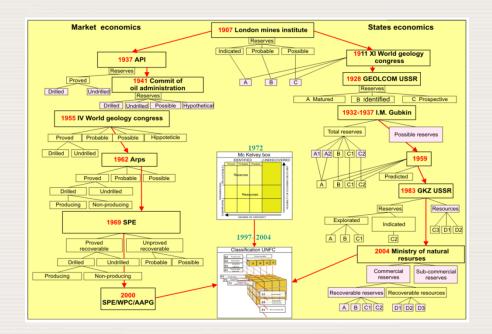
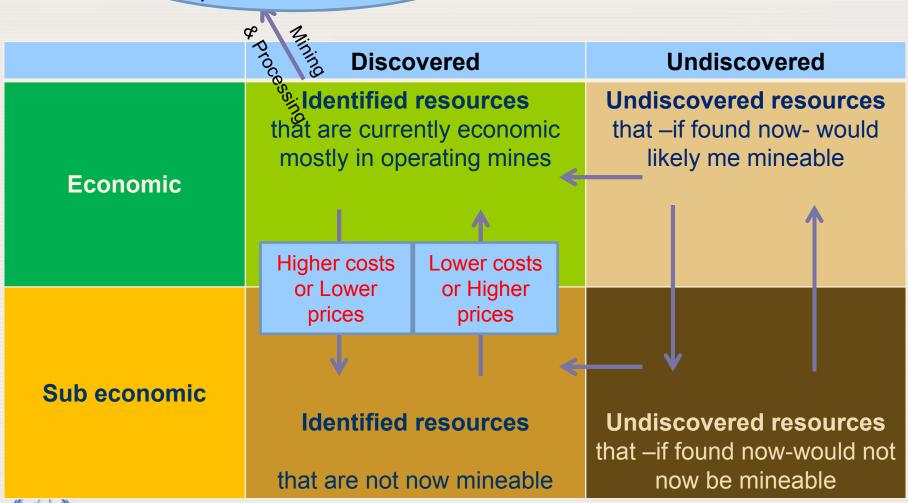
Application of United Nations Framework Classification – 2009 (UNFC-2009) to nuclear fuel resources


Harikrishnan Tulsidas, IAEA; Shengxiang Li, China; Bradley Van Gosen, USA; Roberto Villas-Bôas, Brazil; Leesa Carson, Australia; Charlotte Griffiths, UNECE; James Ross, UK; David MacDonald, UK; Paul Bankes; Adrienne Hanly, IAEA Yanis Miezitis, Australia; Susan Hall, USA; Robert Vance, NEA; Aiym Mukusheva, Kazakhstan

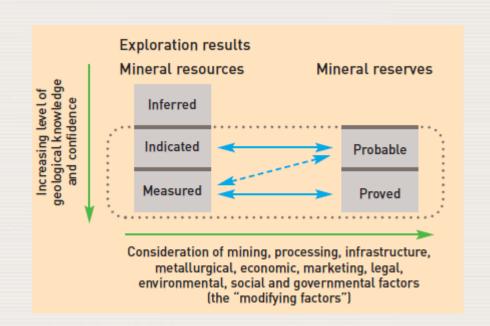
Modern Definition Attempts


- 1927 Russian System
- 1976 USGS Bulletin 1450-A (Precursor to modern codes)
- 1989 JORC Code (revised 1992, 1996, 2004 and 2012)
- 1992 First version of UNFC
- 1994 Council of Mining and Metallurgical Institutions (CMMI) Committee (SME, AusIIM, CIM, IMMM, SAIMM)
- 1997 "Denver Accord" for standard definitions
- 1999 MoU between CMMI and UNFC
- 2000 CIM Standards (Revised 2004, 2010)
- 2002 CMMI disbanded; Committee for Mineral Reserves International Reporting Standards (CRIRSCO) a separate entity with support of International Council of Mining and Metals (ICMM)
- 2006 CRIRSCO Template (revised 2013)
- 2010 Russian system mapped to CRIRSCO
- 2013 UNFC-2009 adopts CRIRSCO

 Template as its solid mineral specifications

Dynamic Flow of 'resources'

Metal supply from production centre



Company public reporting

- CRIRSCO Committee for Mineral Reserves International Reporting Standards
- Mineral reporting codes and guidelines in
 - Australasia (JORC)
 - Canada (CIM)
 - Chile (National Committee)
 - Europe (National Committee PERC)
 - Russia (NAEN)

Project maturity in public reporting

Example of Company Public Reporting – Rio Tinto 2012 Annual Report (available at riotinto.com; Please note Cautionary statement about Forward-looking statements provided in the report)

	Type of mine (a)	Proved ore reserves Probable ore at end 2012 reserves at end 2012				Total ore reserves 2012 compared with 2011			Average mill	Rio Tinto share		
		Tonnage	Grade	Tonnage	Grade		Tonnage	·	Grade	recovery %	Interest %	Recoverable metal
						2012	2011	2012	2011			
COPPER		millions of tonnes	% Cu	millions of tonnes	% Cu	millions of tonnes	millions of tonnes	% Cu	% Cu			millions of tonnes
Reserves at operating mines												
Bingham Canyon (US)												
- open pit (l)	0/P	417	0.53	287	0.44	704	835	0.49	0.48	85	100.0	2.940
- stockpiles (m)		40	0.22	41	0.34	80	80	0.28	0.22	85	100.0	0.191
Escondida (Chile)												
- sulphide (n)	0/P	2,739	0.79	2,145	0.59	4,884	1,993	0.70	0.97	84	30.0	8.672
- sulphide leach (o)	0/P	1,103	0.49	822	0.44	1,926	3,503	0.47	0.50	35	30.0	0.954
– oxide (p)	0/P	53	0.95	38	0.88	91	111	0.92	0.86	69	30.0	0.173
Grasberg (Indonesia)	0/P + U/G	800	1.15	1,624	0.93	2,424	2,523	1.00	0.97	89	(q)	6.905
Northparkes (Australia)												
 open pit and stockpiles 		8.2	0.40			8.2	8.4	0.40	0.41	86	80.0	0.022
underground	U/G			66	0.80	66	62	0.80	0.85	89	80.0	0.377
Oyu Tolgoi (Mongolia)												
South Oyu open pit (r)	0/P	426	0.54	614	0.40	1,040	955	0.46	0.49	82	33.5	1.304
- South Oyu stockpiles (s) (r)		9.0	0.44			9.0		0.44	_	85	33.5	0.011
Palabora (South Africa) (t)	U/G			35	0.54	35	49	0.54	0.57	84	57.7	0.093
Total												21.642
Reserves at development projects												
Eagle (US) (u)	U/G			5.2	2.49	5.2	4.3	2.49	2.69	97	100.0	0.126
Oyu Tolgoi (Mongolia)												
- Hugo Dummett North (v)	U/G			460	1.80	460	410	1.80	1.90	92	33.5	2.550
- Hugo Dummett North Extension (w)	U/G			31	1.73	31	27	1.73	1.85	92	30.5	0.151
Total												2.826

National approaches to reporting

Example Geoscience Australia

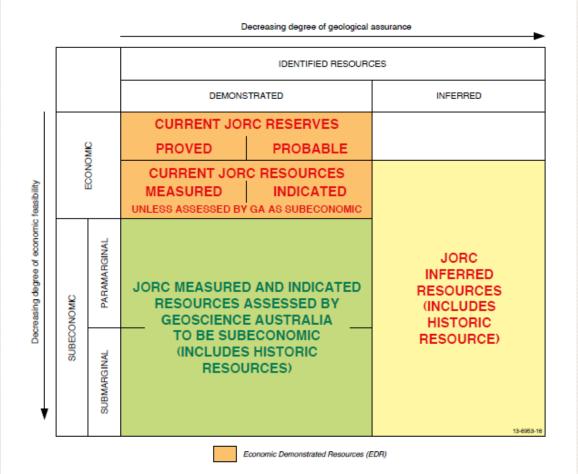
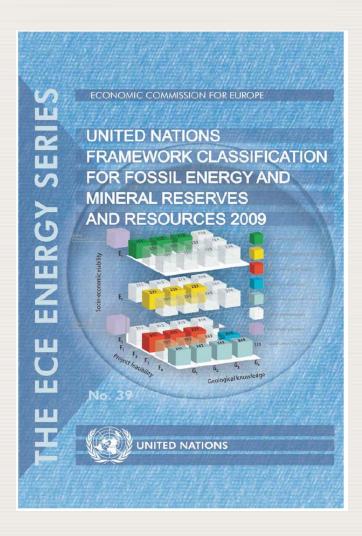
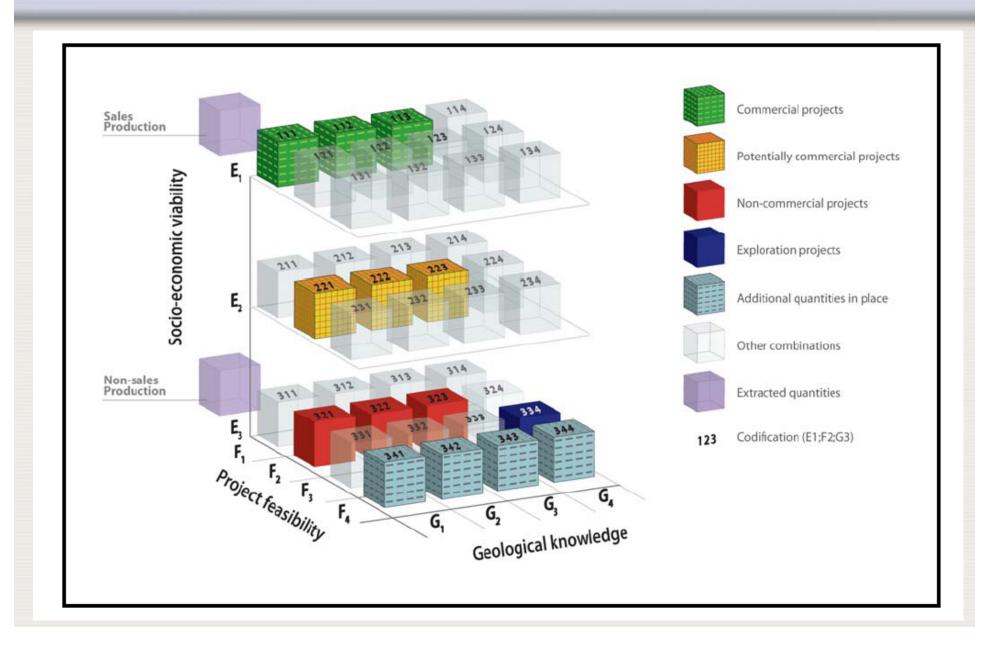



Figure A2. Correlation of JORC Code mineral resource categories with Australia's national mineral resource classification system.


UNFC 2009 Resource Classification

- United Nations Framework Classification for Fossil Fuel and Mineral Reserves and Resources 2009
- Generic, principles-based system
 - Applicable to both solid minerals and fluids
- Applications in
 - International energy studies
 - National resource reporting
 - Company project management
 - Financial reporting
- 3-D classification of resources on the basis of:
 - Socio-economic criteria (E)
 - Project maturity (technical feasibility)
 (F)
 - Geological knowledge (G)
- A key goal of UNFC-2009 is to provide a tool to facilitate global communications
 - Uses a numerical coding system
 - Language independent reporting

UNFC 2009 Resource Classification

UNFC 2009 Classification (Detailed)

	Extracted	Sales Production									
	Extraotea	Non-Sales Production									
		Class Sub-class		Categories							
				E	F	G					
	Future recovery by		On Production	1	1.1	1,2,3					
ace	commercial development projects or mining	Commercial Projects	Approved for development		1.2	1,2,3					
/ in pla			Justified for development	1	1.3	1,2,3					
initially	Potential future recovery by contingent development projects or mining operations	Potentially	Development Pending	2	2.1	1,2,3					
odity		Commercial Projects	Development on hold	2	2.2	1,2,3					
Сот	development projects or mining	Non-Commercial	Development Unclarified	3.2	2.3	1,2,3					
Total	operations	Projects	Development not Viable	3.3	2.3	1,2,3					
	Additional quantiti	es in place associated v	3.3	4	1,2,3						
	Potential future recovery by successful exploration activities	Exploration Projects		3.2	3	4					
	Additional quantitie	s in place associated wi	ith potential deposits	3.3	4	4					

Mapping of UNFC to CRIRSCO

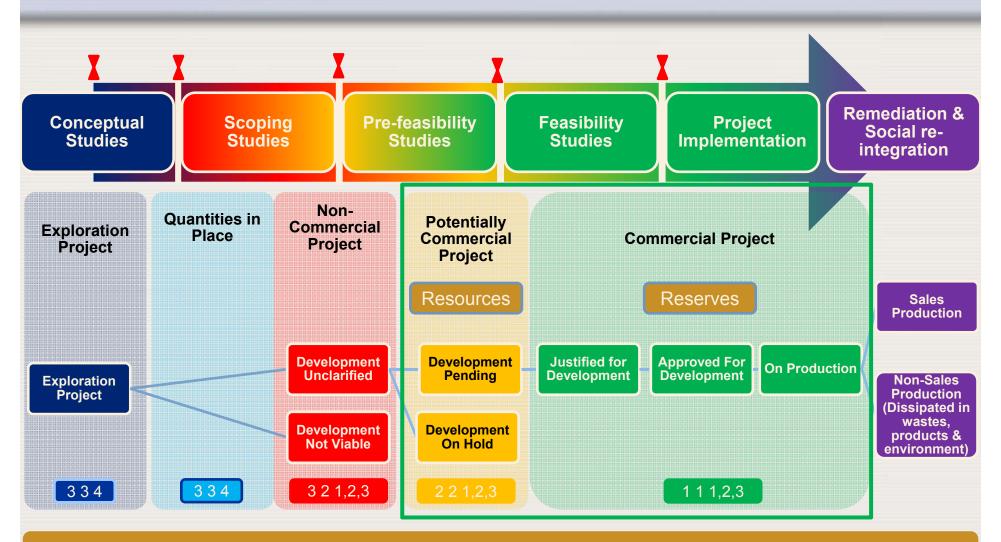
Extracted	Sales Production									
Extracteu	Non-Sales Production									
	Class CRIRSCO E F				G					
					Proved	Probable	NA			
Future recovery by commercial development projects or mining operations	Commercial Mineral 1 Projects Reserves		1	1	2					
				Measured	Indicated	Inferred				
Potential future recovery by contingent development	Potentially Commercial Projects	Mineral Resources	2	2	1	2	3			
projects or mining operations	Non-Commercial Discovered not Projects Discovered not economic* 3			2	1,2,3					
Additional quantities in place associated with known deposits		Discovered unrecoverable*	3	4	1,2,3					
Potential future recovery by successful exploration activities Exploration Projects		Exploration results	3	3	4					
Additional quantities in place associated with potential deposits		Discovered unrecoverable*	3	4	4					

UNFC-2009 Hierarchy

Definitions

Classification Framework

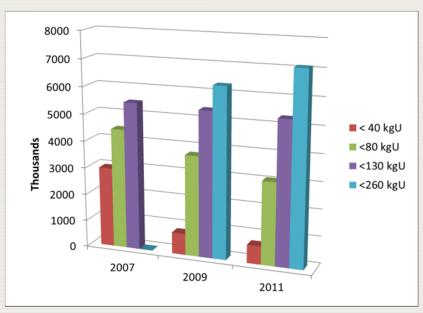
Specifications


Application
Rules (CRIRSCO for
Solid Minerals and
PRMS for Petroleum)

Guidelines

Non-Mandatory Guidance

U mining lifecycle and resources



Accurate and transparent management of essential materials throughout the lifecycle

Uranium resources data

NEA/IAEA Red Book 2011

IAEA UDEPO

Total 7 096 600 tU

Total 33 881 999 tU

Undiscovered Resources: 10 400 000 tU

IAEA /OECD NEA Uranium 2011: Resources,
Production and Demand

http://infcis.iaea.org

NEA-IAEA Classification Scheme

SS			IDENTIFIED	RESOURCES	UNDISCOVERED RE	SOURCES
attractiveness		<usd 40="" kgu<="" td=""><td>Reasonably Assured Resources</td><td>Inferred Resources</td><td>Prognosticated Resources</td><td></td></usd>	Reasonably Assured Resources	Inferred Resources	Prognosticated Resources	
ıomic attr	e at costs	USD 40-80/KgU	Reasonably Assured Resources	Inferred Resources	Prognosticated Resources	Speculative Resources
Decreasing economic	Recoverable	USD 80- 130/KgU	Reasonably Assured Resources	Inferred Resources	Prognosticated Resources	peculative
Decrec		USD 130- 260/KgU	Reasonably Assured Resources	Inferred Resources	Prognosticated Resources	S

Production terminology

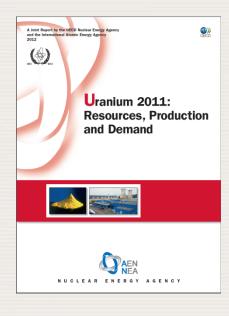
- Production centres a production unit consisting of one or more ore processing plants, one or more associated mines and uranium resources that are tributary to these facilities.
 - Existing production centres are those that currently exist in operational condition and include those plants which are closed down but which could be readily brought back into operation.
 - <u>Committed</u> production centres are those that are either <u>under construction</u> or are firmly committed for construction.
 - Planned production centres are those for which feasibility studies are either completed or under way, but for which construction commitments have not yet been made. This class also includes those plants that are closed which would require substantial expenditures to bring them back into operation.
 - Prospective production centres are those that could be supported by tributary RAR and Inferred, i.e., "Identified Resources", but for which construction plans have not yet been made.

Attempting alignment

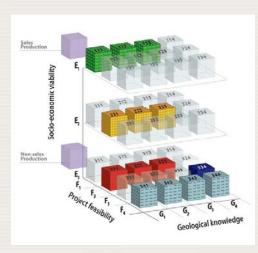
UNFC Class	Sub-class	Е	F	G	Status	Description
	On Production	1	1.1	1,2	Existing	Extraction taking place
Commercial Projects	Approved for development	1	1.2	1,2	Committed	Funds committed and implementation under way
	Justified for development	1	1.3	1,2	Planned	Detailed feasibility studies completed
Potentially commercial	Development Pending	2	2.1	1,2,3	Prospective	Project activities ongoing to justify development in foreseeable future
projects	Development on hold	2	2.2	1,2,3		Project activities on hold; may be subject to significant delay
Non-commercial	Development Unclarified	3.2	2.2	1,2,3		Economic viability cannot be determined due to insufficient information
projects	Development not Viable	3.3	2.3	1,2,3		No reasonable prospects for economic extraction in foreseeable future
Evaloration projects		3.2	3.1	4.1	Prognostic.	Based primarily on indirect data in well defined trends
Exploration projects		3.2	3.2, 3.3	4.2, 4.3	Speculative	Based primarily on indirect data
MARIAEA						

Bridging document

- Bridging
 Documents explain
 the relationship
 between UNFC 2009 and another
 classification
 system
- Bridging Document between NEA/IAEA Classification and UNFC-2009 prepared after wide consultation and preliminary testing
- Also in alignment with solid mineral CRIRSCO

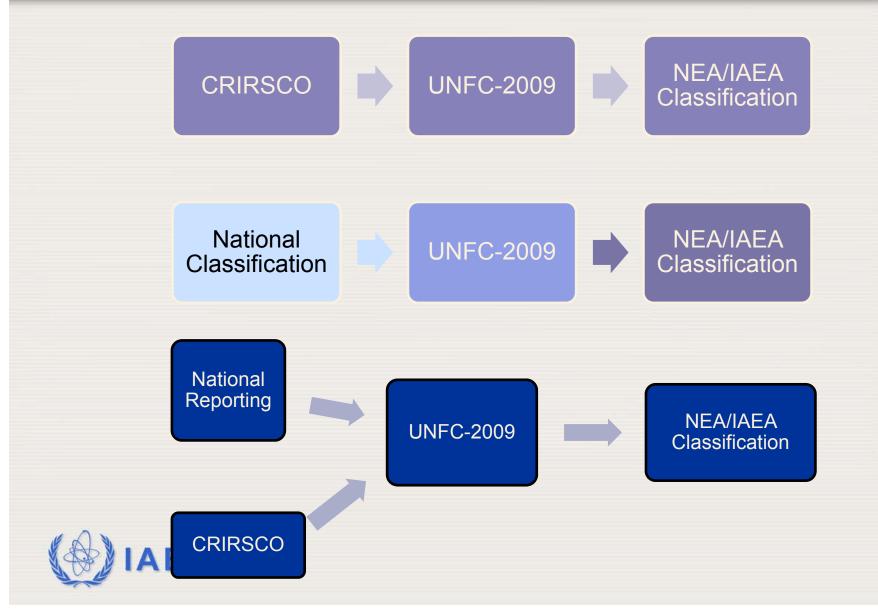

	UNFC Classifica	tion	NEA/IAEA Classification			
UNFC Class	UNFC Categories					
Class	Sub-Class	E	F	G	Status	IAEA-NEA Categorie
	On Production	1	1.1	1,2	Existing	Reasonably Assured
Commercial Projects	Approved for Development	1	1.2	1,2	Committed	Resources (RAR)
	Justified for Development	1	1.3	1,2	Planned	
Potentially commercial	Development Pending	2	2.1	1,2,3	Prospective	Identified Resources
projects		RAR IR*				
Non- commercial	Development Unclarified	3.2	2.2	1,2,3	Unclarified	Identified Resources
projects	Development not Viable	3.3	2.3	1,2,3	Not viable	RAR IR*
Exploration projects		3.2	3.1	4		Prognosticated Resources
		3.2	3.2, 3.3	4		Speculative Resources

^{*}Inferred Resources

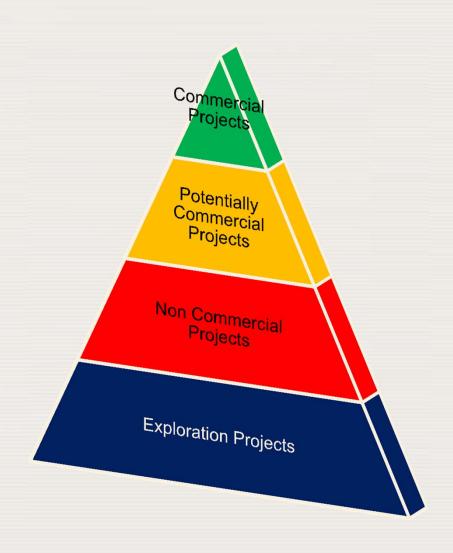

Transferring volumes

NEA/IAEA Red Book System

UNFC-2009



Bridging document will aid transfer of resources reported in Red Book system to UNFC-2009 or vice-versa



Workflows in national reporting

Takeaway messages

- 1. Use UNFC-2009 to report uranium and thorium resources alongside other energy and other mineral resources
- 2. 'Technical feasibility' axis is unique to UNFC-2009, and is applicable throughout the exploration mining lifecycle
- Use UNFC-2009 to classify 'comprehensive extraction' projects
- 4. UNFC-2009 to study the potential of 'energy basins' and in its synergistic development
- 5. UNFC-2009 can aid stakeholder engagement.

Thank you

Harikrishnan TULSIDAS | Nuclear Technology Specialist |

Section of Nuclear Fuel Cycle and Materials | Division of Nuclear Fuel Cycle and Waste Technology | Department Nuclear Energy |

International Atomic Energy Agency | Vienna International Centre, PO Box 100, 1400 Vienna, Austria | Email: T.Harikrishnan@iaea.org | T: (+43-1) 2600-22758 | M: (+43) 664-736-11790 | F: (+43-1) 2600-7 | Follow us on www.iaea.org

