

Overview of the DOE-EM Environmental Legacy: Current Status and Long-Term Strategies for Decommissioning and Environmental Restoration

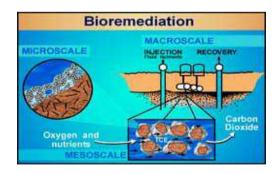
Dave Huizenga (Presented by Mark Gilbertson)

U.S. Department of Energy
Office of Environmental Management

International Experts' Meeting on Decommissioning and Remediation
After a Nuclear Accident, IAEA Headquarters
Vienna, Austria & January 28-February 1, 2013

Mission of DOE-EM Program

- > The Department's Responsibility
 - Decommissioning and cleanup of radioactive waste generated by nuclear energy research and weapons production
 - Remediation of groundwater and soil contamination
 - Reduction of risk to the nation's citizens
- Significant Progress in Our Cleanup Effort
 - Demonstrated advancement in cleanup
 - Technological breakthroughs
- Our Future
 - Continuing Decommissioning challenges to solve
 - Implications for the lessons learned



Strategy to Address Completion of EM Mission

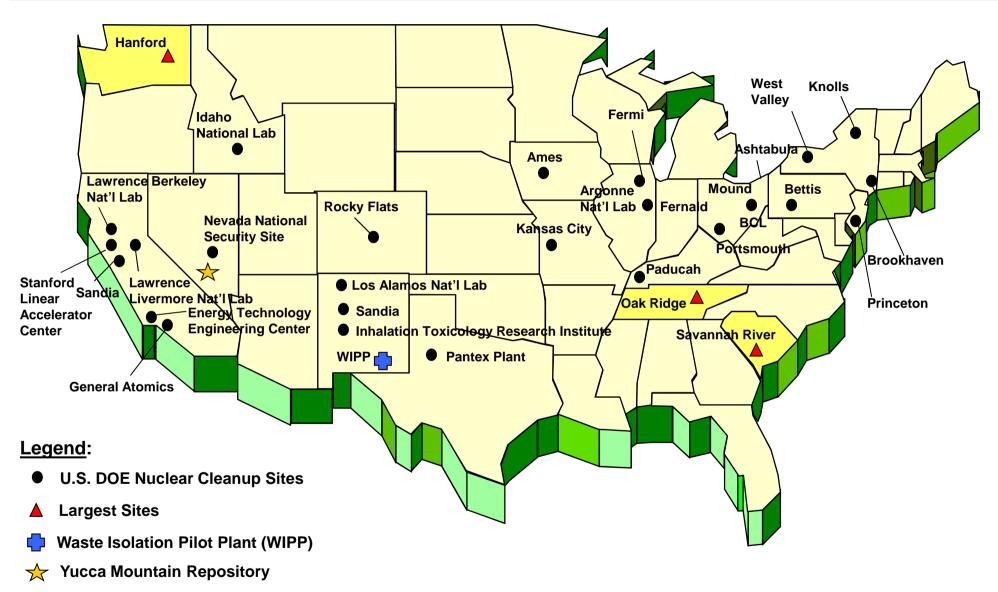
- Constructing and operating facilities to treat radioactive
- liquid waste
- Securing and storing nuclear material in a stable, safe configuration
- Transporting and disposing of transuranic wastes
- Deactivating and decommissioning facilities, and
- Remediating contaminated soil and groundwater

Our Mission – Every Project as Successful as This

1960s: Plutonium Manufacturing **Rocky Flats, Colorado**

Cleanup

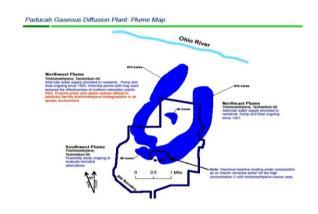
Rocky Flats today: National Wildlife Refuge



Environmental Management

The U.S. Department of Energy's Cleanup Sites

We are Making Progress Every Day


Completed cleanup at 86 of 108 total sites across the U.S.

Annually dispose of one million cubic meters of low-level waste (a football field over 200 meters high)

Brought down more than 1,700 facilities

Stabilized more than 100 groundwater plumes

The Inherently High-Risk Work of Nuclear Cleanup

We work with some of the most dangerous substances known to humanity...

Workers using glovebox to handle plutonium

Performing first-of-a-kind tasks in highly hazardous work environments

Working with high-level waste

Acceleration of EM Cleanup Made Possible by American Recovery and Reinvestment Act (ARRA)

➤ More than 200 Facilities were decommissioned in a two year period

Number of Facilties Removed by Hazard Class

Site	ANL	BNL	Hanford	INL	LANL	NNSS	ORO	Paducah	Portsmouth	SRS
Nuclear	0	0	2	27	1	0	1	0	0	0
Radiological	2	3	14	31	17	2	31	2	0	14
Industrial	0	0	63	34	6	1	18	1	13	16
Total	2	3	79	92	24	3	50	3	13	30

ARRA Funds Facilitated Major Progress at Oak Ridge Site

DOE's largest ever demolition project – former K-25 uranium enrichment plant has been demolished

But Significant Cleanup Challenges Lie Ahead

Retrieving 3000+ million liters of liquid radioactive waste...

... Safely storing it in 200+ underground tanks . . . and

... Solidifying it for safe disposal

Cleaning up 240 sq. km. of contaminated groundwater

Maintaining a stable and skilled workforce

Developing technologies – vitrified waste from Savannah River, South Carolina

M Environmental Management

afety 💠 performance 💠

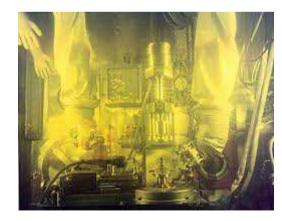
cleanup

closure

Examples of Future Decommissioning Projects

➤ Portsmouth and Paducah Gaseous Diffusion Plants – very large facilities; Portsmouth Plant covers 37 ha (93 acres) and Paducah Plant covers 30 ha (74 acres).

Examples of Future Decommissioning Projects (contd.)

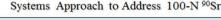

➤ Three story 324 building at Hanford – has two large hot cells – discovery of very large radiation levels (~ 89 sieverts) beneath the facility has complicated decommissioning.

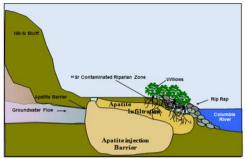
Examples of Future Decommissioning Projects (contd.)

Building 235-F at Savannah River site, a highly contaminated facility. High specific activity of Pu-238 combined with micron sized particles makes this material exceedingly difficult to remove

Examples of Future Decommissioning Projects (contd.)

➤ WESF Facility at Hanford site, holding 1,335 cesium capsules with 2.7 million terabecquerels and 601 strontium capsules with 1.2 million terabecquerels of radiation.




Examples of Groundwater Projects

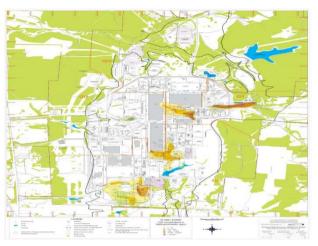
Challenge at Hanford Site:

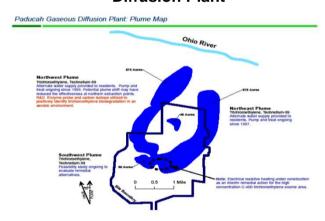
- Strontium-90 plume near Columbia River: Multiple injection systems approach to Appetite Barrier
- ➢ 8+ Sq. kilometers (5 Sq. Miles) groundwater plume at great depths in central plateau: Pump and Treat Tc-99, U, organics and metals
- Uranium contamination at the 300 area: Cost-effective technologies to immobilize and attenuate rads

closure

Pump and Treat Facility

Treatment of Uranium Contamination in 300 Area




Examples of Groundwater Projects

Challenges at Portsmouth and Paducah

- Portsmouth Matching remediation technologies to unique characteristics of multiple source area and plumes
- ➤ Paducah Cleaning up chief sources and multiple off-site risk of 807 hectares (1,999 acres) of groundwater contamination

Plumes of trichloroethylene contaminated groundwater at the Portsmouth Gaseous Diffusion Plant

Groundwater Plume at Paducah Site

Significant Challenges Besides Decommissioning and Soil/Groundwater Remediation

- ➤ Spent Nuclear Fuel
- **≻Stabilization of Tank waste**
- **➤ Disposition of Low Grade Plutonium**
- ➤ Treatment and disposal of waste in underground tanks at Hanford and Savannah River sites.

Require construction and operation of large, costly facilities

In Conclusion

U.S. Department of Energy decommissioning and remediation activities provide cleanup today and advanced technological solutions for tomorrow

Our record proves that safe, effective decommissioning and remediation is possible:

- We have effectively reduced risk to the environment and the community
- Each year, our knowledge and skill base grows

Our work provides global benefits beyond nuclear cleanup:

- Advancing state-of-art during a stagnant time for the nuclear industry
- Enhancing global security and nuclear non-proliferation

Enormous challenges lie ahead:

- The ability to continue to make technological leaps forward
- The willpower of societies to continue to pursue difficult, expensive work

