PF3-2013-000001 PSN-2013-0069

Efforts for the restoration at Fukushima Daiichi Nuclear Power Plants

January 31, 2013

TOSHIBA CORPORATION

Executive Officer, Corporate Senior Vice president Chief Technology Executive, Power Systems Company MAEKAWA Osamu The information contained in this document is, confidential and proprietary to TOSHIBA CORPORATION. Therefore, please kindly observe the followings. It shall not be traced, otherwise copied, nor used any other purpose, nor communicated to any other person without our written permission.

TOSHIBA CORPORATION

Contents

Overview of Plant Status After Earthquake and Tsunami

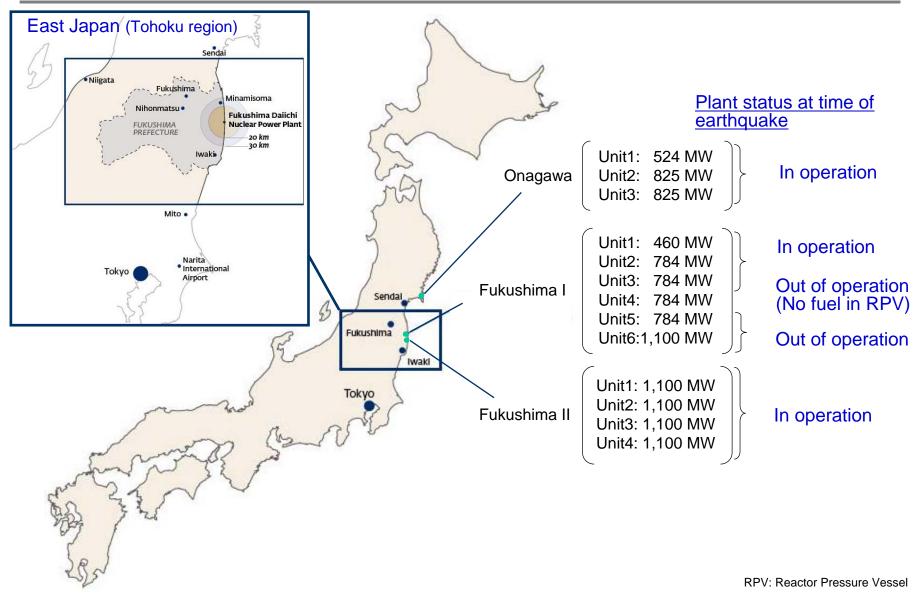
- **Restoration Activities for Fukushima NPP**
- Mid- and long-term Countermeasure
- International Cooperation

Conclusion

Overview of Plant Status After Earthquake and Tsunami

Restoration Activities for Fukushima NPP

Mid- and long-term Countermeasure


International Cooperation

Conclusion

13 Plants Struck by the Earthquake and Tsunami

Plant Status at each site

Onagawa Nuclear Power Station

- One of 5 off-site power line and 6 of 8 EDGs were available
- All plants achieved cold shutdown by using those electric power supply systems by March 12, 2011

Fukushima Dai-Ni (2nd) Nuclear Power Station

- One of 4 off-site power lines and 6 of 12 EDGs were available
- Safety related motors and pumps were replaced
- Transformers were replaced from Kashiwazaki NPP
- All plants achieved cold shutdown by using tie-line of those power supply systems by March 14, 2011

Fukushima Dai-Ichi (1st) Nuclear Power Station

- All of electric power supplies were lost on Units 1 to 4
- Only one EDG was available on Units 5 and 6

EDG: Emergency Diesel Generator NPP: Nuclear Power Plant

Reactor Scram Response Loss of off-site Power due to Earthquake

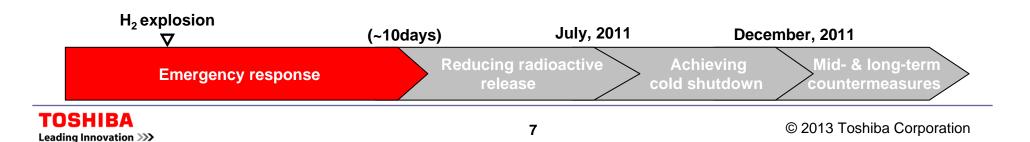
Emergency DG startup

Reactor Cold Shutdown

Overview of Plant Status After Earthquake and Tsunami

Restoration Activities for Fukushima NPP

Mid- and long-term Countermeasure



International Cooperation

Conclusion

1. Emergency Response (Initial actions after the accident)

Overview of Emergency Response

Emergency resp	DONSE Reducing radioactive release Achieving cold shut- down Mid- & long-term counter- measures					
March 11, 14:46 Unit 1 Hydrogen explosion (March 12) Unit 3 Hydrogen explosion (March 15)						
Objective	Activities taken by Toshiba					
 Recovery of electric power supply 	Supply and laying of cablesSupply of car batteries for I&C					
 Core cooling 	 Supply and connection of hoses and cables for seawater injection Supply of 52 sets of submerged pump 					
 Avoidance of hydrogen explosion 	Plan to drill holes on the R/B roof Mock up test					
Cold shutdown of units 5 & 6	 Utilize of the last D/G, cabling and panel installation Installation of pumps and piping 					

I&C: Instrumentation and Control R/B: Reactor Building D/G: Diesel Generator

Preparation of emergency measures

Recovery of Electric Power Supply

➤ Car batteries for I&C power supply (2,000 units)

Installation of Cables

Leading Innovation >>>

High-voltage cables: 2,000m Low-voltage cables : 23,400m

Urgent core cooling by seawater injection

Connection hose and cables

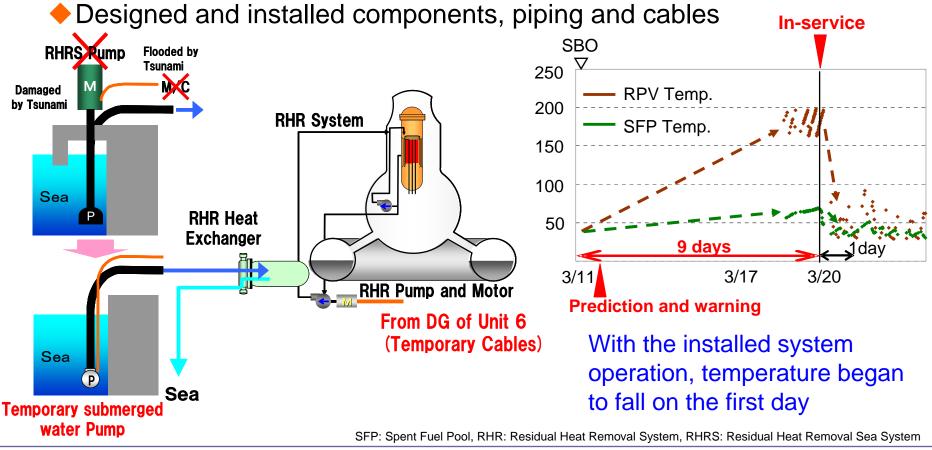
Submerged pumps (52 sets)

Avoidance of hydrogen Explosion

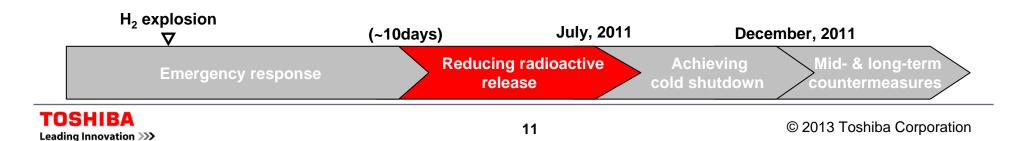
 \succ Drill the roof of reactor building (Water jet and core drill)

Mock up test before explosion of Unit 3

Submerged pump+hose

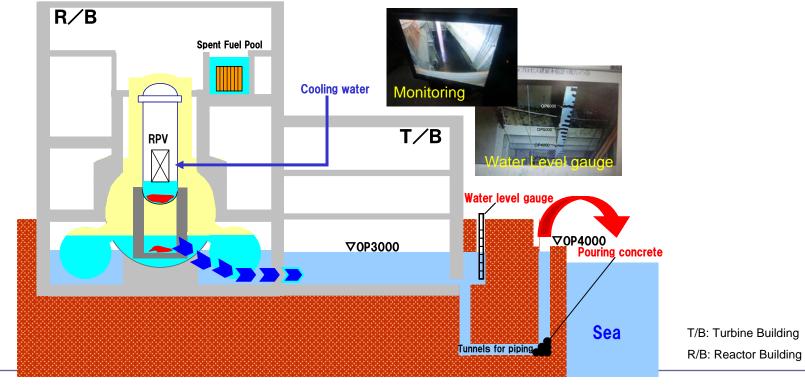


H₂ explosion July, 2011 December, 2011 (~10days) Mid- & long-term **Reducing radioactive** Achieving **Emergency response** countermeasure cold shutdown I&C: Instrumentation and Control HVAC: Heating Ventilation and Air Conditioning and Cooling System TOSHIBA © 2013 Toshiba Corporation 9


Activities for Reactor cooling of Unit 5

Prediction of core damage risk of Unit 5

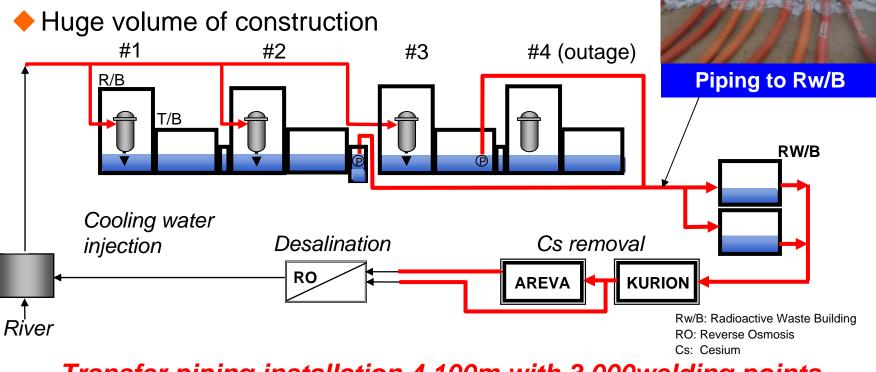
- Observed and understood the plant condition and predict future trend considering current plant condition
- Predicted the risk of core and spent fuel damage



2. Reducing Radioactive Release

Reduction of Overflow Risk

- Risk prediction, proposal, and urgent on-site work
 - Evaluated overflow risk
 - Installed water level gauge in T/B pit
 - Proposed water treatment facility based on the risk evaluation
 - Poured concrete by civil team to avoid excess release of contaminated water to sea



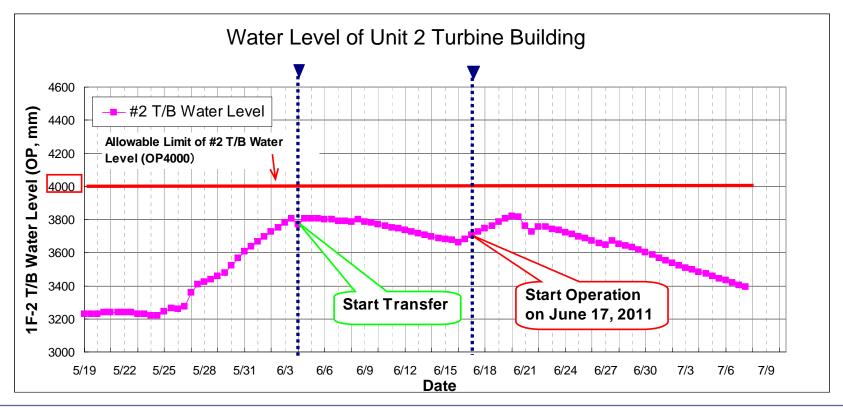
Establish the water treatment system

Highly contaminated water accumulated in T/B

- Nearly 70,000 tons of contaminated water as of April 19, 2011
- Urgent water transfer is required to Rw/B
- Established recirculation loop for water treatment system

Transfer piping installation 4,100m with 3,000welding points

TOSHIBA Leading Innovation >>>


Installation of 1st Water Treatment System

International collaboration

- KURION & AREVA systems was integrated by Toshiba site work
- 24-hrs-a-day work to meet schedule

Just two months for delivery

Designed started on April 11, and delivered on June 17

Installation of 2nd Water Treatment System

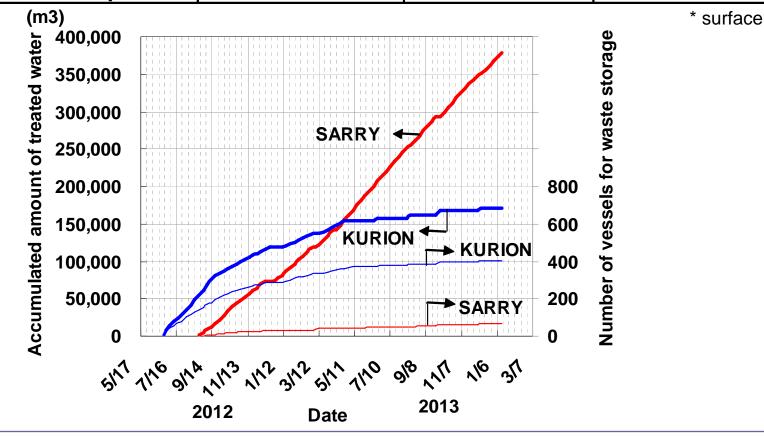
■ <u>Simplified Active water Retrieve and Recovery System</u>

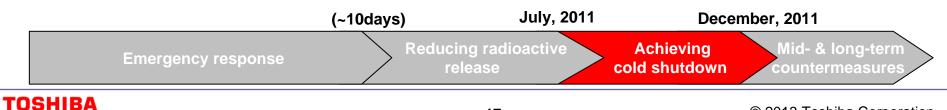
- Increase the stability and redundancy
- Ready for operation within only 2.5 months from proposal under severe conditions
- Major role among water treatment systems since October, 2011

Major Characteristics

- Reduction of media changes
 Shielding design for workers
 Improvement of DF
- Stable operation

Simplified Active water Retrieve and Recovery System (SARRY)


DF: Decontamination Factor


System performance comparison

System performance is better in each respect

	SARRY	KURION	AREVA
Cesium Removal DF	1 x 10 ⁶	1 x 10 ^{2~5}	1 x 10 ³
Tereated Water/Vessel	5,568 m ³ /vessel	425 m ³ /vessel	-
Max Radiation Exposure*	<1mSv/h	30mSv/h	-

3. Achieving Cold Shutdown

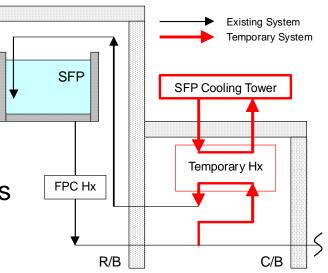
Achieve Cold Shutdown

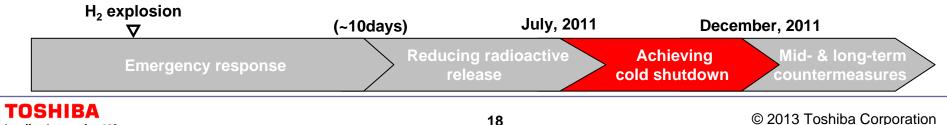
Improve reliability for core cooling

Installed another injection line using Core Spray line to enhance redundancy and to make direct cooling possible

Install temporary SFP cooling system

- Installed within a week in the severe dose rate area in Unit 2
- Remarkable temperature reduction from approx. 70 °C to 40 °C on the first day

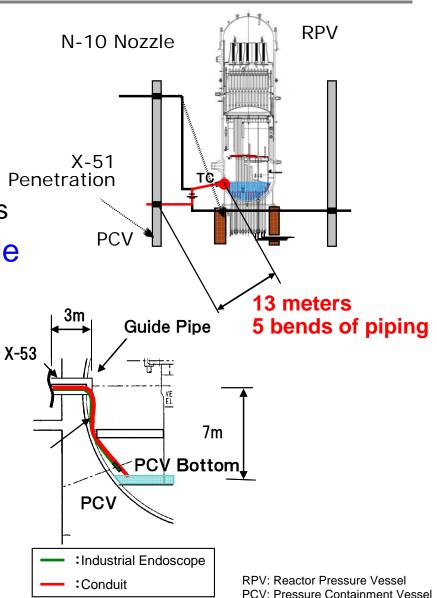

Improve reliability of N2 gas injection


Leading Innovation >>>

Installed three additional N2 injection facilities to reduce the risk of further hydrogen explosions

SFP Cooling Tower

Continuous Monitoring of Plant Parameters


Improve reliability of RPV temperature monitoring

- Existing thermocouples of RPV have been broken in Unit 2
- Installed alternate thermocouple Penetration under severe radiation conditions

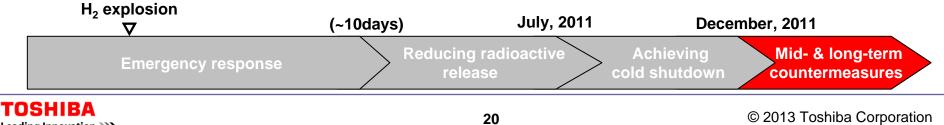
Direct observation of PCV inside

- Industrial endoscope
- Performed 1st and 2nd entry into PCV of Unit 2
- Evaluated water level within the PCV

Overview of Plant Status After Earthquake and Tsunami

Restoration Activities for Fukushima NPP

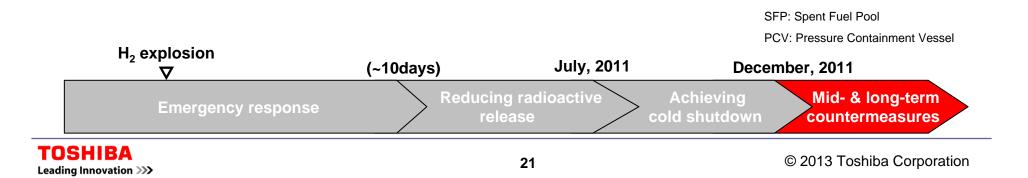
Mid- and long-term Countermeasure



International Cooperation

Leading Innovation >>>

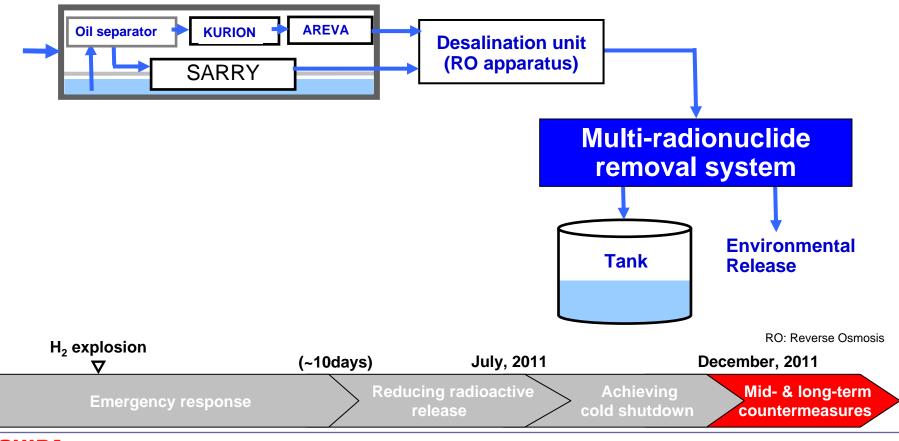
Conclusion


Major Activity Areas of Mid- and Long-term

Three major areas of activities

 New additional water treatment system to reduce the risk of stored treated water further

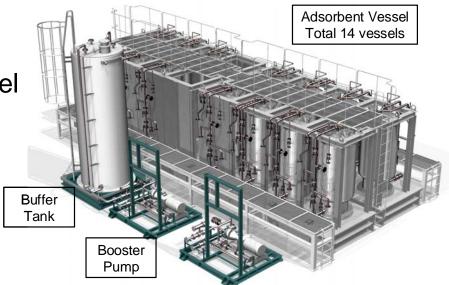
Spent fuel removal from SFP


Core debris removal from PCV

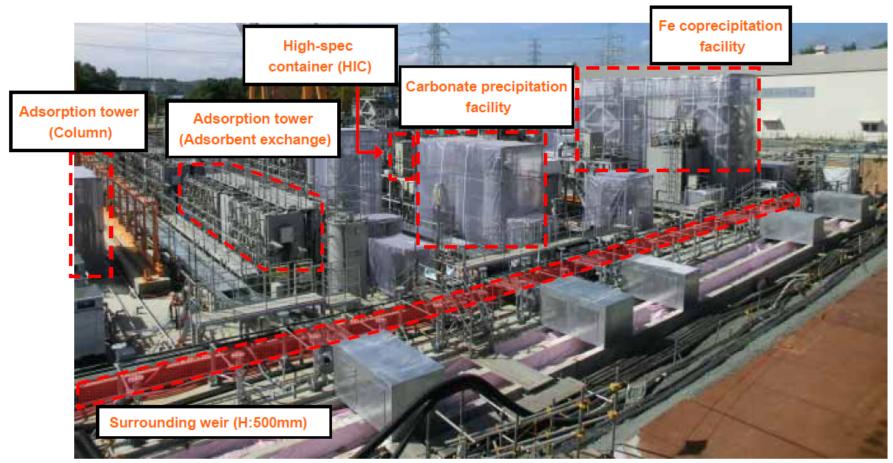
New Accumulated Water Treatment System

MRRS (Multi Radionuclide Removal System)

- Increase of accumulated amount of treated water
- Expect further risk reduction of stored water



MRRS (<u>Multi Radionuclide Removal System</u>)

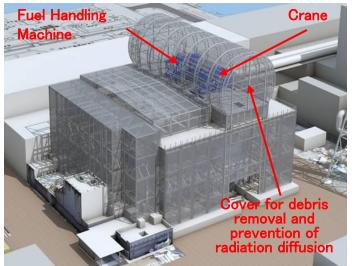

- Conceptual design by EnergySolutions
- Detailed design and manufacturing by Toshiba

Performance

- Remove all residual radioactivity to below non-detectable level (less than about 1Bq/L depending on nuclide)
- Strontium was identified as the major nuclide
- With MRRS, the radioactivity level will become lower by two order of magnitude.

Overview of MRRS

As of September, 2012 Cited from TEPCO release


The system has already been installed at the Fukushima site, and is now waiting for approval by NRA

TEPCO: Tokyo Electric Power Company NRA: Nuclear Regulatory Authority

Spent Fuel Removal form SFP of Unit 3

Development of fuel removal system

- Collaborate with U.S. team, e.g., Westinghouse and U.S. venders
- Develop remote control fuel handling machines, crane and transfer vessel
- Radiation condition: over 800mSv/h at a maximum
- Removal work to be started from the end of 2014

Item	2012	2013	2014	2015
System Design				
Basic Design				
Detail Design				
Fabrication				
Installation and Test				
Spent Fuel Removal				j)

Fuel Removal System of Unit 3

Schedule for Fuel Removal

Leakage inspection for PCV Vent Pipe

Develop Quadruped robot with compact inspection vehicle

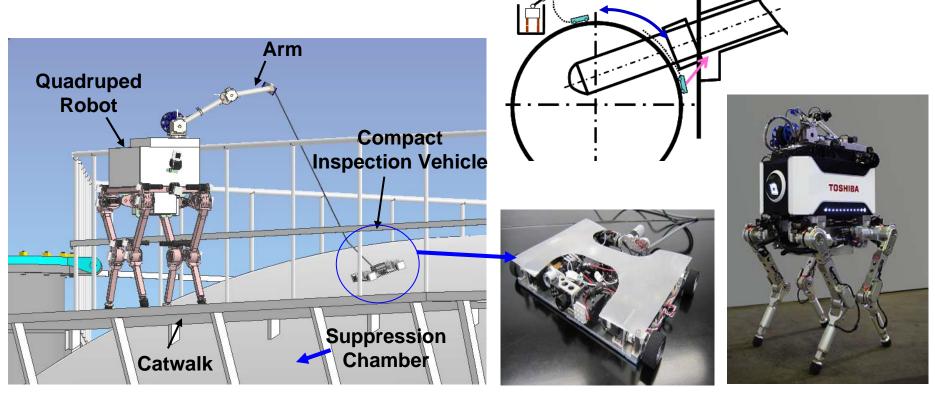


Image of vent pipe inspection by Quadruped Robot for Unit 2

Compact Inspection Vehicle

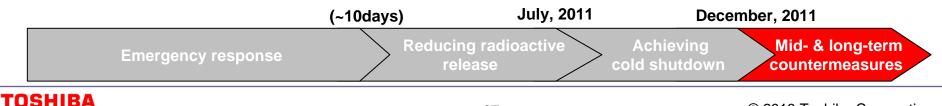
Quadruped Robot

Reference: TEPCO HP URL: http://photo.tepco.co.jp/date/2012/201212-j/121211-01j.html

Inspection results for PCV Vent Pipe

Quadruped robot performed leakage inspection

- Inspected vent pipe of PCV in Unit 2 on December 11, 2012
- No leakage was found
- Seven other vent pipes will be inspected in the near future



Edge of sand cushion drain pipe

Lower part of vent pipe bellows cover

Reference: TEPCO HP

URL: http://photo.tepco.co.jp/en/date/2012/201212-e/121211-02e.html

Overview of Plant Status After Earthquake and Tsunami

Restoration Activities for Fukushima NPP

Mid- and long-term Countermeasure

International Cooperation

Conclusion

International Cooperation

Toshiba's international partners

- Mt. Fuji-team : Toshiba, Westinghouse, B&W, Shaw, and Exelon
 - Issued "Total Management Plan" reflecting TMI experiences with an eye toward 10-year restoration in April and in May, 2011
 - Promoted SAMG with Exelon to improve plant safety

Install equipment for inspection and restoration

- T-HAWK (US: Westinghouse and Honeywell)
- ➢ <u>Simplified</u> <u>Active</u> water <u>Retrieve</u> and <u>Recovery</u> System (US: Shaw, etc)
- ➤ <u>M</u>ulti <u>R</u>adionuclide <u>R</u>emoval <u>S</u>ystem (US: EnergySolution)
- > Spent Fuel Removal System on Unit 3 (US: Westinghouse)
- Toshiba is investigating available technologies with Russia, Germany, UK, and Kazakhstan on waste management and core debris removal

TMI: Three Mile Island Nuclear Power Station SAMG: Severe Accident Management Guideline

Overview of Plant Status After Earthquake and Tsunami

Restoration Activities for Fukushima NPP

Mid- and long-term Countermeasure

International Cooperation

Conclusion

Conclusion

Since March 11, 2011, Toshiba has taken a key vital role of restoration at all steps, such as:

Prediction and evaluation of the plant,

Planning of various recovery plan,

Design, engineering and manufacturing,

Site execution

- Toshiba will continue its activities at the Fukushima site in cooperation with the Japanese government and TEPCO
- In addition, Toshiba greatly appreciates international support for these challenges

TEPCO: Tokyo Electric Power Company

TOSHIBA Leading Innovation >>>