Challenges for Removal of Damaged Fuel and Debris

Presented at the International Experts' Meeting Decommissioning and Remediation after a Nuclear Accident

> 28 January – 1 February 2013 Vienna, Austria

C. A. (Chuck) Negin Project Enhancement Corporation Germantown, Maryland, USA

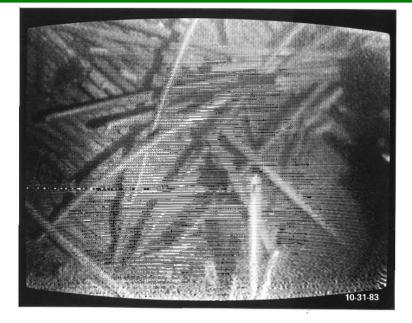
Overview

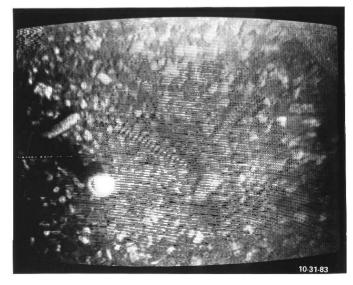
- "Challenges" can be addressed for many topics such as Managerial, Technical, Regulatory, Financial, Safety, etc.
- This presentation's focus is primarily technical, and is a addressed in four major phases, each of which has different challenges
 - 1. Characterization In Situ
 - 2. Removal
 - 3. On site Management
 - 4. Offsite Management

Mostly TMI-2 examples for illustration (EPRI NP-6931 and others)

Fuel Damaging Events; Chronologically

Plant (year)	INES Scale	Country	Primary cause
NRX (1952) water cooled, heavy water moderated	5	Canada	Design, operator error
Windscale (1957) gas cooled graphite pile	5	UK	Lack of information for operators
SL-1 (1961) small prototype PWR	4	USA	Design
Chapelcross(1967) Magnox carbon dioxide cooled, graphite moderated	4	UK	Design, operations
Fermi 1 (1968) sodium cooled	4	USA	Design
Agesta (1968) water cooled	4	Sweden	Design
St. Laurent (1968) gas cooled, graphite moderated	4	France	Procedure


Fuel Damaging Events; Chronologically (cont.)

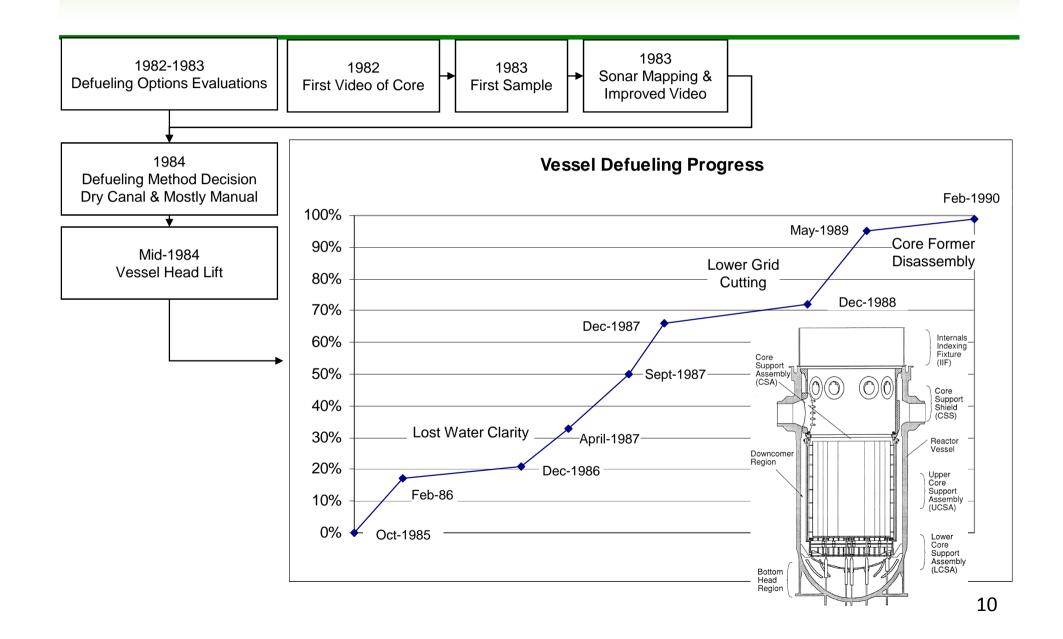

Plant (year)	INES Scale	Country	Primary cause
Lucens (1969) experimental gas cooled, heavy water moderated	5	Switzerland	Channel flow blockage
Jaslovské Bohunice, A-1, (1977) gas cooled, heavy water moderated	4	Slovakia	Operator error, blocked fuel channel
Three Mile Island (1979) PWR, light water cooled	5	USA	Design, operator error, relief valve stuck open
Chernobyl (1986) RBMK, water cooled, graphite moderated	7	Ukraine	Design, violation of operating procedures
PAKS (2003), PWR	3	Hungary	Design, operational delay
Fukushima-Daiichi (2011), BWRs, light water cooled	7	Japan	Tsunami, Design

Major Phase 1: Characterization In Situ

- Visual information or visual depiction <u>of the actual</u> <u>conditions</u> as soon as possible
- Until this happens, decisions and detailed planning for fuel removal cannot proceed and have great uncertainty
- Challenges for in situ characterization related to
 - Gaining Access
 - Selection of equipment for the radiation, temperature, immersion
 - Placement for still and video cameras, sonar and laser scanning
 - Other information
 - Analysis of information gathered
- Remote Technology is essential, but challenging in itself

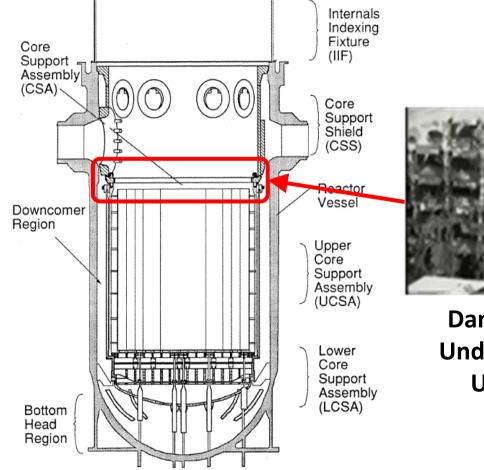
Chernobyl

Major Phase 2: Removal


TMI-2 History

- Five concepts for fuel removal before visual characterization; none used:
 - Dual Telescoping Tube, Manipulator
 - Manual Defueling Cylinder
 - Indirect Defueling Cylinder
 - Flexible Membrane
 - Dry
- Later, a remotely operated service arm, shredder, and vacuum transfer system was considered and rejected
- Used the core bore mining drill and manual methods

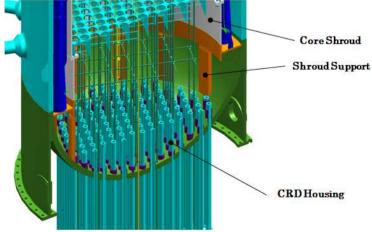
Some Important TMI-2 Removal Decisions

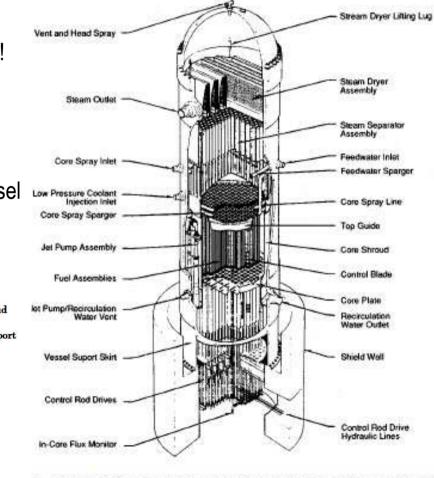

Decisions	Significance	
Decision to not to install	 New application for the proposed technology, concern that 	
in-core shredding	failure would cause problems, relied mostly on manual	
equipment in the vessel	manipulation with power assist	
	 Allowed defueling to start earlier, knowing that overall 	
	schedule would not be minimized. This was preferred over a	
	3 year development before any fuel would be removed.	
Decision to leave refueling	Less depth for manually operated tools	
canal dry	 Shielded work platform 2m above the reactor pressure vessel 	
	flange	
	 Reduced need for water processing 	
	 Dose rates were low within the refueling canal 	
Core Boring Machine	 Samples of the fuel and debris that was melted together 	
	 Breaking up the crust and molten mass when manual 	
	methods were unsuccessful	

TMI-2 Defueling Progress and Key Impacts

TMI-2 Vessel Debris Removal

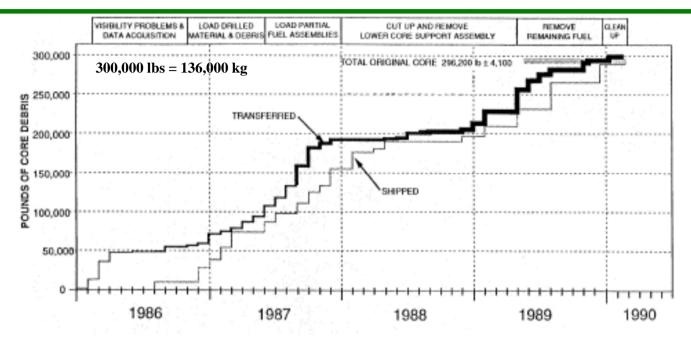
- Each had their own specific challenges:
 - Core Cavity
 - Lower Support Grid
 - Flow Distributor
 - Behind and within the Core Baffle Plates
 - Lower Head





Damage on the Underside of the Upper Grid

Boiling Water Reactor


- Some Important Differences:
 - Duration of extreme temperatures!
 - Mass of material above the core
 - Thinner vessel walls
 - Vessel melt through
 - Mass of material beneath the vessel
 - Greater vertical dimension

.9 Typical BWR reactor arrangement. (Source: Courtesy of General Electric Company.)

Accounting for Fissionable Material

- Standard accountability (at the gram level) was impossible
- NRC granted an exemption to the requirement
- Required a detailed survey conducted after defueling for what remained
- Computer code analyses conducted for fissionable nuclides: 1) existing prior to the accident, 2) remaining after the accident, and 3) radioactive decay
- Therefore the net balance is what was sent to Idaho

TMI-2 Final Verification

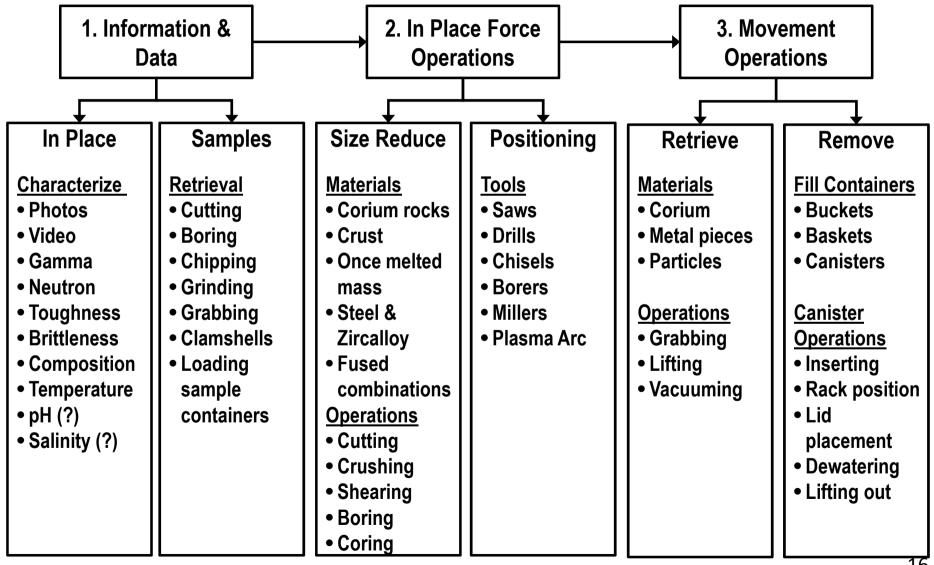
Residual Fuel

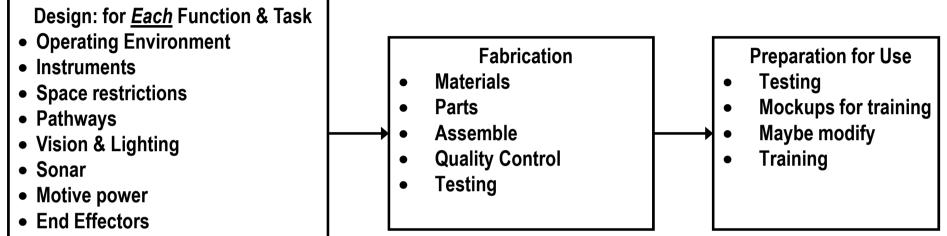
- When defueling was complete, there was about 1,000 kg of fuel remaining; the reactor pressure vessel has less than 900 kg
- In the reactor coolant system has less than 133 kg; greatest single location amount is ≈36 kg on the B Steam Generator upper tube sheet
- Criticality ruled out by analysis
- Assessment Required a Combination of:
 - Video inspection for locations
 - Gamma dose rate and spectroscopy
 - Passive neutron solid state track recorders, activation, BF3 detectors
 - Active neutron interrogation
 - Alpha Detectors
 - Sample Analysis

Remote Technology in the 1980s

- Much of what was done was innovation based on the immediate need
- The wagon is one example. A toy remote controlled vehicle was used to survey a very radioactive equipment cubicle.
- Several robotic devices were created specifically for TMI-2; ROVER is one example. A miniature submarine in the pressurizer is another.

Mini Submarine



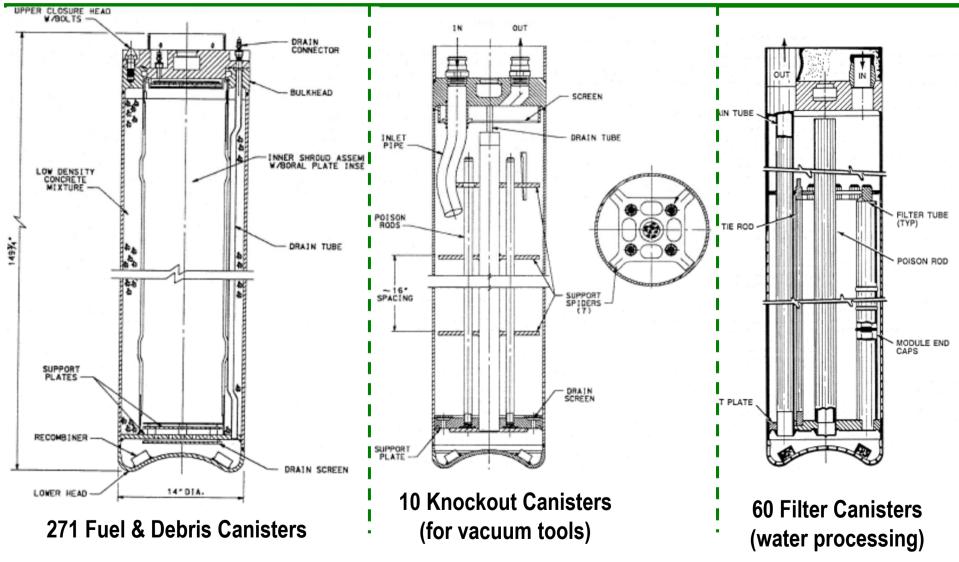

Low Tech but Effective

ROVER

Characterization and Removal Remote Capability Functions

Development and Application Cycle

• Power


The Challenge:

- Developing remote equipment for any one of the functions on the previous viewgraph can be considered a project;
- or part of a project that will develop equipment for multiple functions.
- The development cycle for each application can take weeks or months, depending on complexity and if components are available or component development is also needed.

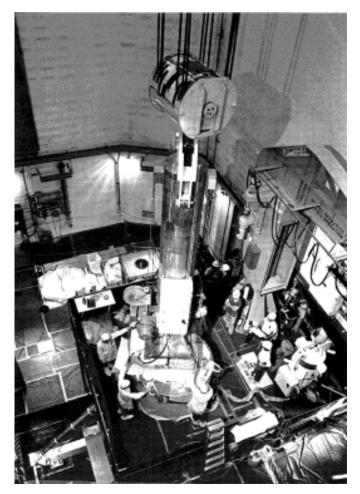
Major Phase 3: Onsite Management

- Containers for removal
- Movement of containers on site
- Containers for storage and shipping
- Storage facility on site and transport

Three Canister Design – 341 Shipped

Storage and Handling

Canister Staging in Spent Fuel Pool



Transfer Cask Operations

Major Phase 4: Offsite Management

- Transport to offsite
- Storage offsite: wet or dry
- Processing or Disposal

Loading the Shipping Cask

Shipping Cask

Packaging, Transport, & Storage at Idaho

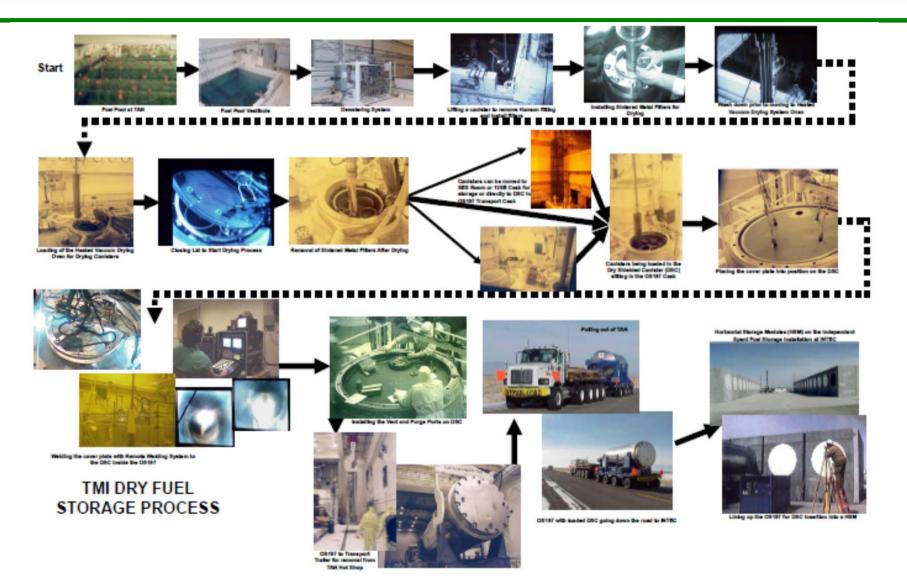
1986 to 1990 341 canisters of fuel & debris in 46 shipments by rail cask to the Idaho National Laboratory

1990 to 2000 Wet Storage in Spent Fuel Storage Pool

2000 – 2001 Removed from pool, dewatered, dried, and placed in dry storage

Canister Dewatering

- 1 year required for design, fabrication, testing. About 6 months for drying operations of the 341 canisters.
- Water removed in the pool area. Drying conducted in two vacuum ovens by remote control in a shielded machine shop
- Each oven held 4 canisters. Each cycle required 2 days for drying at a maximum temperature of ≈500° C.
- Since then, vacuum drying for non-TMI fuels has been conducted at < 100° C, with drying times of about a week.



Canister Dewatering Machine in the Pool Area

Loading a Canister into the Vacuum Dryer

Drying Campaign at INL

Conclusion

- There are significant differences among every fuel damaging event
- Challenges and approaches may be the same in general, there will be significant differences in every situation.
- Until visual evidence of the physical form is available there will be great uncertainty for designing the tools, machines, and methods for removal.
- Damaged fuel removal is the most challenging aspect in most post-accident cleanups
- Selection of fuel removal hardware must be such that its failure in use will not significantly impact continued removal operations.
- Planning and design must consider the entire fuel removal and disposition campaign from beginning to end.
- This integration must include worker health and safety, physical removal tools and equipment, containers, various measurements of removed materials and debris, interim on-site storage, and how the material is to be packaged and transported.