CN-211/1PD International Experts' Meeting on Decommissioning and Remediation after a Nuclear Accident at IAEA Headquarters in Vienna, Austria, Jan.28-Feb.1, 2013



# Selection of fuel-debris properties required for defueling work at post severe accident

<u>Hirotomo IKEUCHI</u>, Toru KITAGAKI, Ryohei WAKUI, Hidetoshi HIGUCHI, Kenji KOIZUMI, Kimihiko YANO, Naoya KAJI and Tadahiro WASHIYA

Japan Atomic Energy Agency (JAEA)

## Introduction

- JAEA started to obtain the characteristics data of simulated fuel-debris in order to <u>contribute to the development of defueling tools</u>,
  - $\checkmark$  by obtaining the essential physical properties, and
  - ✓ by finding out the appropriate candidate materials as non-radioactive surrogate debris for a mock-up test of the defueling tools.
- In this work, the essential physical properties of debris were selected.
  - Review of the defueling process and tools of TMI-2
  - Assumption of defueling process and tools for 1F
  - Rating on fuel-debris properties

## Assumption of defueling process and tools for 1F – Based on comparison with TMI-2 –



| Platfo                                                                        | orm                |                                              |                                      |                                   |                    |  |  |  |  |  |
|-------------------------------------------------------------------------------|--------------------|----------------------------------------------|--------------------------------------|-----------------------------------|--------------------|--|--|--|--|--|
|                                                                               |                    | Defueling                                    | process                              | Feature                           | Defueling tool     |  |  |  |  |  |
|                                                                               | 15                 | 1. Removal of the structure (core su         | e molten lower<br>pport plate, etc.) | Pin and plate-like structure      | (b), (d), (e)      |  |  |  |  |  |
|                                                                               |                    | 2. Removal of de<br>bottom of RPV            | bris on the                          | Particle debris                   | (d), (e)           |  |  |  |  |  |
| 13                                                                            |                    | 3. Removal of the plate                      | e RPV bottom                         | Plate-like structure              | (c), (d), (e), (f) |  |  |  |  |  |
|                                                                               |                    | 4. Removal of <u>co</u><br>housing and ICI   | ontrol rod<br>M housing              | Massive debris,<br>Pin structure  | (b), (d), (e)      |  |  |  |  |  |
|                                                                               |                    | 5. Removal of Me                             | CCI products                         | Particle debris,<br>MCCI products | (a), (d), (e), (f) |  |  |  |  |  |
|                                                                               |                    | 6. Removal of the annulus                    | e debris in the                      | Particle debris                   | (c), (e)           |  |  |  |  |  |
|                                                                               |                    | 7. Collection of <u>d</u><br>PCV and the cod | ebris in the<br>bling system         | Floating debris                   | (d), (e)           |  |  |  |  |  |
| Estimation of damaged core<br>of Unit-1 * <u>Major difference from TMI-2.</u> |                    |                                              |                                      |                                   |                    |  |  |  |  |  |
| (Functional categories of defueling tools used in TMI-2)                      |                    |                                              |                                      |                                   |                    |  |  |  |  |  |
|                                                                               | Cutting-tool       |                                              | Pick-and-                            |                                   |                    |  |  |  |  |  |
| A: impact<br>fracture (a)                                                     | B: shearing<br>(b) | C: fusion<br>cutting (c)                     | place<br>(d)                         | Aspiration<br>(e)                 | Core-boring<br>(f) |  |  |  |  |  |

# **Categories of defueling tools**



\*Photos of tools are quoted from EPRI NP-6931 and EGG-TMI-7385



#### (a) impact fracture e.g. air chisel Target: crust-like or massive debris



#### <u>(b) shearing</u>

*e.g.* heavy duty shears Target: pin-like structures



## (c) fusion cutting

*e.g.* plasma-arc cutter Target: plate-like structures



#### (d) pick-and-place

Target: particle or fine debris



(e) aspiration e.g. air lift pump Target: particle debris



### (f) core-boring e.g. rotary drill-bit Target:

crust-like or massive debris

- Most defueling process would be conducted with similar tools for TMI-2.
- Physical properties of fuel-debris are selected from the viewpoint of their influences on the performance of defueling tools (a)–(f).

## **Rating on fuel-debris properties**



**Table** Tentative list of debris properties selected as essential for defueling tools

\* This table is subject to be revised according to the progress of R&Ds on debris properties.

| Defueling tools                               | Shape | Particle<br>size | <u>Density</u> | <u>Thermal</u><br>conductivit<br>⊻ | <u>Specific</u><br><u>heat</u> | <u>Melting</u><br>point | <u>Hardness</u> | <u>Elastic</u><br>modulus | <u>Fracture</u><br>toughness | Bending<br>strength | Dynamic<br>fracture<br>toughness | Latent<br>heat of<br>melting |
|-----------------------------------------------|-------|------------------|----------------|------------------------------------|--------------------------------|-------------------------|-----------------|---------------------------|------------------------------|---------------------|----------------------------------|------------------------------|
| a. Impact<br>fracture                         |       |                  | 0              |                                    |                                |                         |                 | 0                         | •                            |                     | 0                                |                              |
| b. Shearing                                   |       |                  |                |                                    |                                |                         | •               | •                         | •                            |                     |                                  |                              |
| c. Fusion<br>cutting                          |       |                  | •              | •                                  | •                              | •                       |                 |                           |                              |                     |                                  | 0                            |
| d. Pick-and-<br>place                         | 0     | 0                | •              |                                    |                                |                         |                 |                           |                              |                     |                                  |                              |
| e. Aspiration                                 | 0     | 0                | •              |                                    |                                |                         |                 |                           |                              |                     |                                  |                              |
| f. Core-boring                                |       |                  | •              | •                                  | •                              |                         | •               | •                         | •                            | 0                   |                                  |                              |
| Some data had accumulated Need to be measured |       |                  |                |                                    |                                |                         |                 |                           |                              |                     |                                  |                              |

# Some data had accumulated Need to be measured by SA research

Note: •, Significantly affecting properties to the tool design; O, Properties which is difficult to be measured on the 1F debris samples or can be replaced by other properties.

• Consequently, the mechanical properties such as hardness, elastic modulus and fracture toughness of fuel-debris are very short, and those properties are estimated to affect to the tool design.