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Abstract: Turbulent particle transport is investigated by analyzing recent boron impurity transport ex-

periments in the Alcator C-Mod transport experiments with sets of partial differential equations (PDEs)

for the multi-component plasmas. The PDE’s give fast solutions for the fluctuation field vector composed

of the electric potential φ, hydrogenic density δni and the impurity densities δnz1, δnz2. For comparison

we carry out a limited number of simulations with the gyrokinetic code GTC. Linear eigenmode analysis

shows that there are (1) the usual drift waves with hydrogen and the impurities convected by the dynam-

ics of the TEM-ITG modes and (2) impurity drift waves supported by the impurity density gradients

alone. The impurity drift waves add new degrees of freedom to the plasma allowing for hydrogen flux

to be inward or outward. In these new modes the hydrogenic ions behave quasi-adiabtically since the

parallel phase velocity is lower than in the TEM-ITG modes. The interaction between these two types

of drift waves makes the transport matrix large and complex. We give examples for the particle fluxes

for C-Mod in the H and ITB confinement modes. Related experiments reported on JET and TEXTOR

are briefly discussed.

1. Introduction

Turbulent transport from drift waves is a key problem for fusion physics across all mag-
netic confinement geometries. To analyze plasmas with impurities a set of fluid equations
are used to find the eigenmodes and eigenfrequencies of a nonuniform, magnetized plasma
with a fluctuation vector Xk composed of fluctuations of the electron density, the work-
ing gas ion density, the impurity density and the electrostatic plasma potential. This
structure of the eigenmodes and eigenvectors is shown for two collisionality regimes: (i)
the collisional drift waves appropriate for the scrape off layer (SOL) and the edge plasma
in limiter discharges and (ii) the trapped electron mode taken in the limit of a Terry-
Horton[1] fluid description for the core plasma. From the eigenmodes and eigenvectors
we compute the out-of-phase part of the density to potential fluctuations and analyze the
quasilinear particle fluxes as a function of the power spectrum of the plasma potential
fluctuations and the gradient parameters charactering the H and ITB confinement modes.

We use data from C-Mod experiments with boronized walls and with argon injection
to obtain a wide range of plasma gradients and confinement regimes. Multiple types of
drift wave modes exist in such plasmas. For each wave vector k there are one stable
mode, one unstable mode and a third low-frequency damped parallel-ion-flow mode. In
the nonlinear state, the modes are coupled in a complex manner. For weakly turbulent
states, the quasilinear particle fluxes for hydrogenic and impurity gases are calculated
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from the out-of-phase φ and δni and δnz fluctuations. The qualitative changes of the
particle fluxes with variation of the sign and strength of the density gradient lengths are
compared with C-Mod plasmas in the H, and ITB mode regimes. Nonlinear simulations
are carried out to study the change in the nature of the turbulence from boron to argon
and with the change of plasma confinement regimes. Turbulence growth from initial
plasma states with (δne = φ = 0) and only a tiny injection of the impurity make clear
the role of the impurity injection for drift wave dynamics. Both argon and boron ions
can convect inward with velocities v ∼ D/Lnz for hollow impurity profiles.

From gyrokinetic equations we derive the Vlasov-Poisson dispersion relation with the
impurities. We see there are three types of drift wave instabilities that produce turbulent
particle and impurity fluxes: (1) the drift wave with hydrodynamic ion response giving
ITG modes with quasi-adiabatic electrons, (2) the trapped particle mode-ITG mode
(TEM-ITG) that has trapped electron resonances[2] and FLR-hydrodynamic ions and
impurities, and (3) the impurity drift wave where the impurity has FLR-hydrodynamic
response and the hydrogenic working gas has quasi-adiabatic response. The impurity
mode is strongly unstable when the hydrogenic ions and the impurity ions have reversed
(opposite direction) radial gradients and the turbulent flux then transports each ion type
down its respective density gradient leading to a thorough mixing of the two ion types.
This impurity mode requires that the impurity density component of Zeff be of order
unity. For a small impurity contribution to the effective charge the impurity drift mode
is stable. Owing to the numerous parameters, the exact stability condition is complicated
and must be determined numerically. We use Dtrans-Impure code which is available at
http://pecos.ph.utexas.edu/~vortex.

To model the impurity mode turbulence we generalize the multi-fluid models given in
Futatani et al[3, 4] so that the hydrogenic ion response has the quasi-adiabatic response

δni(k)

ni

= −
eφk

Ti

(

1 +
ici(ωk − ω∗i)

|k‖vi|+ |ωDi|

)

(1)

where ci =
√

π/2 and the frequencies ωk, ω∗i, k‖vi and ωDi are defined in Sec. 2. This
hydrogenic response is the ion analog of what is called the ”i δk” response function used
in the Terry-Horton model for TEM turbulence[1, 5].

While earlier studies suggest that the effect of heavy impurities is more dramatic on
the fluctuations and transport than the lighter impurities we have not found a strong
difference in the argon and boron dynamics in the C-Mod simulations. The difference in
the fluxes is explained by the profiles of the impurities and the spatial distribution of the
turbulence. The injection of argon at the edge of the plasma is widely considered as a
method to create an edge localized radiation belt for a continuous heat exhaust lessening
the thermal load on the divertor plates. This favorable role of impurities must be balanced
with possible accumulation of impurities in the core plasma. There is a strict limit on
the core impurity limit from radiated power losses and from D-T fuel dilution. From this
perspective the use of low Z impurities including helium(He), carbon(C), beryllium(Be)
is the better choice for impurity control of the burning plasma. For basically this reason
the choice of the plasma facing components in the ITER machine [6] is beryllium.

For one impurity species there are four space-time fields of interest and the constraint
of quasineutrality reduces the system to three free fields which are taken as the electron
density, the hydrogenic ion density and the impurity density. The condition of quasineu-
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FIG. 1. (a)Time evolution of boron density profile in the C-Mod discharge with 3.5 MW ICRF
heating, from the H-mode (blue circles), transition (black squares), to ITB (red triangles); (b)
boron density gradient profile in H-mode (blue dash) and ITB (red solid).

trality then determines the electrostatic field φ(x, t) and replaces the Poisson equation.
Alternatively, one may view the three independent fields as the electrostatic potential
φ, the ion density field ni and the impurity density field nz with the electron density
determined by the quasineutrality condition

ne(x, t) = ni(x, t) + Znz(x, t). (2)

We assume the plasma pressure-to-magnetic pressure ratio is sufficiently low that the
electrostatic approximation is valid.

We show that the impurity gradient driven drift wave is unstable for the impurity
profile peaked toward the plasma edge and produces inward transport of impurities and
outward flux of hydrogen. This impurity drift wave rotates in the direction of the ion
diamagnetic drift velocity. A similar result is reported in [7, 8] from quasilinear models.
For pure hydrogen plasmas, the particle pinch term is inward for waves rotating in the ion
diamagnetic direction, and outward for waves rotating in the electron direction. Gener-
ally, there are fluctuations rotating in both directions in a tokamak. By varying the ratio
of the electron to ion thermal flux, Angioni et al [7] report a change from outward im-
purity flux for electron thermal loss dominated plasmas to the inward impurity pinch for
ion thermal loss dominated plasma where the ITG modes rotate in the ion diamagnetic
direction.

The confinement regimes are characterized by the plasma gradient parameters as
follows: (1) H-mode the electron density profile is flattened and the low Z impurity
profile is typically hollow. The hydrogenic profile is peaked on axis. We idealize this
regime to have ∇(Znz + ni) = 0 so the theoretical model is taken as R/Lnz = −6 and
R/Lne = 0. The CXRS data confirms that the B5+ profile is hollow. (2) ITB internal
transport barrier profiles have three radial subintervals: inside the barrier, in the barrier
around ρ = 0.5 and outside the barrier. Inside the ITB we take R/Lnz = 8. Outside
the ITB we take R/Lne = 4 and R/Lnz = 0. Inside the transport barriers the particle
dynamics is probably not diffusive and the transport model of [9, 10] may apply. This
model has asymmetric left/right random steps.
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FIG. 2. The Er profiles inferred from CXRS from Doppler shifts of boron lines used to compute
the near to perpendicular boron flow velocity as given in Fiore et al [13]. The 20 ms profiles
are given between the 200 msec interval before and after the transition from H mode (blue) to
the ITB mode (red).

Rowan et al[11] show that the light impurity boron accumulates in the core of the
ICRF driven ITB plasmas as had been shown earlier for argon in JET[12] and C-Mod.
FIG. 1. shows the time evolution of the fully stripped boron from the H mode to the ITB.
FIG. 1.(a) shows the change of the boron density profile from hollow at t = 0 (circles)
through the transition with flat profile at t = 0.12 s (squares) to the peaked profile in
the ITB regime t = 0.24 s to 0.36 s (diamonds). The normalized logarithmic gradient
of boron density n(B+5) is shown in FIG. 1.(b) for the initial hollow profile in the H
mode to the peaked profile in the ITB regime. The peak of the ICRF power deposition
is at ρ = 0.5 just outside the ITB region which starts at ρ = 0.4. The interpretation
is that the ITG-TEM modes are transporting the electrons and the boron inward with
convection velocity v = −Dr/a2Lnz. The change in the electron density profile from flat
R/Lne ∼ 0 in the H mode regime to peaked R/Lne ∼ 5 in the ITB regime weakens the
ITG and increases the density gradient driven TEM mode. The ITBs are created through
a combination of strong Er shear and control of the field line pitch giving locally weak or
reversed magnetic shear. As shown in FIG. 2., the Er shear in C-Mod experiments gives
rise to the ITB.

TEXTOR-94 has R/a = 1.75m/0.46m tokamak with circular cross section and limiter
discharges. Typically the plasma has is flat topped for 4 seconds with four pulses of
Argon at t = 1, 2, 3, 4 seconds. The XUX/VUV signals decay in 100 ms. The density is
measured with interferometry and the Te(r) from ECE emission. The D and V values are
inferred from simulations with all ionizations levels with the STRAHL transport code.
To match the reported diffusivity of Dedge = 10m2/s (I = 301kA) and of D = 7m2/s
(I = 447kA), we use the qDgB scaling as DB/Ip. The level of fluctuations required is
RMS eφ/Te ∼ 0.01 with kyρs = 0.3. The associated pinch velocity is −30m/s.
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2. System of Gyrofluid Equations

The gyrofluid model for the drift wave turbulence is a simplified form of the Sugama-
Watanabe-Horton equations for the density, parallel velocity and pressure for each species
[14]. We consider the isothermal equation of state to eliminate the temperature gradient
driven modes. Subscript s indicates species (e for electrons, i for ions, and z1 for first
impurities, and z2 for second impurities). We use the nonlinear continuity equations for
ions, impurities and electron and Ohm’s law for parallel electron dynamics[15]. The drift
frequency from the guiding center drift is a destabilizing effect with ∇ · vE = iωDeeφ/Te,
where ωDe = ky(2cTe/eBR) cos θ. Here we define the diamagnetic drift frequencies

ω∗s = ky
cTs

ZseB

1

ns

∂ns0

∂x
= −kyρs

cs
Lns

(3)

for s = i, z1, z2 and e.

2.1. Standard Drift Waves and Trapped Electron Mode

For the first model of drift wave impurity turbulence dimensionless partial differential
equations are

∂ñi

∂t̃
+

R

Lni

∂

∂ỹ
φ̃+

[

φ̃, ñi

]

−

(

∂

∂t̃
∇̃2

⊥φ̃+
[

φ̃, ∇̃2
⊥φ̃

]

)

= 0 (4)

∂ñz

∂t̃
+

R

Lnz

∂

∂ỹ
φ̃+

[

φ̃, ñz

]

−
A

Z

(

∂

∂t̃
∇̃2

⊥φ̃+
[

φ̃, ∇̃2
⊥φ̃

]

)

= 0 (5)

∂ñe

∂t̃
+

R

Lne

∂

∂ỹ
φ̃+

[

φ̃, ñe

]

+
mi

me

cs
Rνei

∇̃‖(−∇̃‖ñe + ∇̃‖φ̃) = 0 (6)

For linear analysis, we can assume fluctuation in the form of exp(ik · x − iωt), drop
nonlinear terms (Possion brackets), and rewrite linearized equations in the following
matrix form

A(k)X = −iωB(k)X, where X =











δni

ni
δnz1

nz1
δnz2

nz2
eφ
Te











(7)

The eigenvectors of the impurity drift wave matrix give the polarization of the fluctu-
ations that determine the relative strength and direction of the hydrogenic and impurity
ion transport. We can factor out X4 which is eφk/Te and write the new eigenvector as

X̂(k) =









δni

ne
/ eφ
Te

δnz

ne
/ eφ
Te

δne

ne
/ eφ
Te

1









(8)
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Physically, the X̂ vector describes the “ polarization” of density waves related to the
electrostatic wave. The particle fluxes are given by

Γi = Re
∑

k

ikyφ
∗
k

B
δni = −ne

Te

eB

∑

k

ky|eφk|
2

T 2
e

ImX̂1(k)

Γz = Re
∑

k

ikyφ
∗
k

B
δnz = −ne

Te

eB

∑

k

ky|eφk|
2

T 2
e

ImX̂2(k)

Γe = Re
∑

k

ikyφ
∗
k

B
δne = −ne

Te

eB

∑

k

ky|eφk|
2

T 2
e

ImX̂3(k)

(9)

Quasineutrality gives Γe = Γi + ZΓz. The impurity flux is given by

Γz = −Dz
∂nz

∂x
+ Vznz (10)

where

Dz =
∑

k

v2x(k)γ

B2(ω2 + γ2)
(11)

Vz =
∑

k

v2x(k)γ

ω2 + γ2

(

ω(k)eB

kyTe

)

k2
⊥ρ

2
s (12)

The quasilinear formation in Eq. (9) is valid when there are overlapping resonants in
the Hamiltonian motion of the test particles. In the nonlinear state the fastest growing
modes couple to the damped eigenmodes driving them up to the level required for the
power flow from the stable waves to balance the damping from the unstable modes.

The nonlinear waves saturate wave growth when the finite kx part of the spectrum
grows up to have the rms values of δni

ni
∼ Z δnz

ne
∼ ρτ

〈k2xL
2
n〉

0.5 . The spectrum has an isotropic

part at higher k⊥ and a zonal flow and density flattening part at low ky values. There
are coherent vortices that come and go in the turbulence which are especially strong
in the limit of small parallel diffusivity ν‖ ≪ |ωk|. The spectral index n = 3 to 5 from
simulations and scattering experiments. The turbulent wavenumber spectrum that enters
Eq. 9 maybe modeled as

|
eφk

Te
|2=

ρ2τ
L2
n

1

(1 + k2
⊥ρ

2
s)

n/2
. (13)

where Ln is the dominant gradient scale length driving the growth rate. The dispersion
relation, obtained by taking the determinant in Eq. (7) to be zero, gives

DDW = ω2(Aω2 +Bω + C) = 0 (14)

where A = k2
⊥ρ

2
snτ , B = i[k4

⊥ρ
2
sµτ + ν‖(1 + k2

⊥ρ
2
snτ ) + iωDek

2
⊥ρ

2
snτ ] and C = −(k4

⊥ρ
2
sµτ +

iω∗e)(ν‖ + iωDe). There are two zero frequency modes and two non-zero roots of Eq.
(14). We can estimate corresponding growth rates and frequencies provided ωDe = 0,
zero visicosities and γ ≪ ωr .

ωr =
ω∗e

1 + k2
⊥ρ

2
snτ

, γ =
ω2
∗ek

2
⊥ρ

2
snτ

(1 + k2
⊥ρ

2
snτ )2ν‖

(15)

The trapped electron mode[3] can be solved similarly.
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2.2. Impurity Drift Mode

The zero eigenvalues can be removed if we consider low-frequency acoustic waves. Con-
sider the parallel force balance for ions and substitute parallel ion velocity vi‖ into the
continuity equation, we can get a new term

∇‖vi‖ = −
c2s
νi
∇2

‖

(

eφ

Te
+

Ti

Te

δni

ni

)

= ν‖i
eφ

Te
+ ν‖i

Ti

Te

δni

ni
(16)

Similar terms apply added for impurities. The adiabatic electrons response δne/ne =
eφ/Te occurs when ν‖e → ∞. For ν‖z1, ν‖z2 ∼ 0, the ion response is

δni

ni
=

(

iω∗i + iωk2
⊥ρ

2
s − ν‖i

−iω + ν‖iTi/Te

)

eφ

Te
(17)

When ν‖i → ∞, ions are adiabatic, i.e. δni/ni = −eφ/Ti; when ν‖i → 0, ions are
hydrodynamic, δni/ni = −(ω∗i/ω)(eφ/Ti) giving the standard drift waves.

Now for Z2nz/ne . 1, we derive the impurity drift waves(IDW). The impurity drift
wave has |ω| ≪ ν‖i with the growth rate given by

γIDW
k

=

ni

ne

Te

Ti

1
ν‖i

[−ω∗i + ω(k2
⊥ρ

2
s + Te/Ti)] (Z1

nz1

ne
ω∗z1 + Z2

nz2

ne
ω∗z2)

[

1 + ni

ne

Te

Ti
+ k2

⊥ρ
2
s(A1

nz1

ne
+ A2

nz2

ne
)
]2

(18)

The impurity drift wave is unstable when ω∗iω∗z < 0.

3. Gyrokinetic Dispersion Relation

The GTC code[16] solves for the gyrokinetic distribution function given by

δfs(k, ω, v) = eφk

[

∂fs
∂ǫ

−
ω ∂fs

∂ǫ
+ ky

esB
∂fs
∂x

ω − ωDs − k‖v‖
J2
0 (
k⊥v⊥
ωcs

)

]

(19)

where ωDs =
kycTs

esBR

(

msv2⊥
2Ts

+
mv2

‖

Ts

)

with s = e, i, z for electron, ion and impurity species. In

the quasineutral limit with a local Maxwell-Boltzman distribution, the analytic dispersion
relation is

DGTC(ω, k) =
∑

j

Z2
j nje

2

Tj

[

1− 〈
ω − ω∗j(1 + ηi(ǫ− 3/2))

ω − ωDj − k‖v‖
J2
0 〉M

]

(20)

where the 〈g〉M denotes the average over the Maxwell-Boltzmann.
For ITG modes with adiabatic electrons we find both the hydrogen and impurity

temperature gradients driven the turbulence. When the density gradient is less than the
temperature gradient we find the instability condition

niTe

neTi

R

LT i
+

Z2nz

ne

Te

Tz

R

LTz
> 1 +

Te

Ti
(1− fz) +

Te

Tz

Z2nz

ne
(21)



8 THC/P4-11

For inverse cascade to wavelength kyρs = LT /qR we find the turbulent diffusivity scales
as

DITG = Const

(

Te

eB

)(

qρs
LTi

)(

1− fz +
LT i

LTz

Z2nz

ne

)1/2

(22)

where Tz = Ti and LT i ≈ LTz. Simulations with GTC are being carried out to test the
scaling with the impurities.

4. Conclusions and Application to ITER

We have written and are running subroutines for solving systems of drift wave turbulence
equations for the multi-component fusion plasmas. The subroutines are fast compared
with gyrokinetic simulations and suitable for near-to-real time analysis of tokamak data.
Typical values for the ITER plasma assuming a 3% beryllium corresponding to a charge
fraction fZ = Znz/ne = 48% and a Zeff = 2. The initial findings for the characteristics
of the impurity transport are that there is an inward transport of beryllium to the core
of the H-mode plasma similar to that of boron in the C-Mod experiments. For the model
values we estimate a Dne = 3m2/s and Dnz = 5m2/s for the core and Dne = 6m2/s and
Dnz = 6m2/s for the edge plasma. In the H-mode we estimate vz = −Dnz(ρs/Lnz)

2 for
the pinch velocity.
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