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Overview of anomalous toroidal momentum transport. 
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Abstract 

Toroidal momentum transport mechanisms are reviewed and put in a broader perspective. The generation 

of a finite momentum flux is closely related with the breaking of symmetry along the field. The symmetry 

argument allows for the systematic identification of possible transport mechanisms. Those that appear to 

lowest order in the normalized Larmor radius (the diagonal part, Coriolis pinch, ExB shearing, particle 

flux, and up-down asymmetric equilibriums) are reasonably well understood. At higher order, thought to 

be of importance in the plasma edge, the theory is still under development.  

 

1. Introduction 

Plasma rotation plays a key role in regulating turbulence and has a beneficial effect on energy 

confinement in fusion devices through ExB shearing [1,2]. Furthermore, a sufficiently large rotation can 

stabilize the resistive wall mode [3,4]. Toroidal rotation plays a special role in tokamaks due to the 

symmetry of the device. This symmetry leaves the toroidal angular rotation, in contrast to the poloidal 

rotation, undamped and, consequently, the toroidal rotation can attain values much in excess of the 

poloidal rotation. Toroidal velocity shear translates into both ExB shear, perpendicular to the background 

magnetic field, and parallel velocity shear. While the former is beneficial for confinement, the latter can 

enhance turbulent transport, since in toroidal geometry the parallel velocity gradient adds a drive to the 

Ion Temperature Gradient (ITG) mode [5-7]. It is largely the ratio of the poloidal to the toroidal magnetic 

field strength     ⁄      that determines the relative strength of these two mechanisms. For 

sufficiently large     ⁄  the ExB shear dominates and turbulence is suppressed.  

Early experimental observations on momentum transport [8-17] and theoretical investigations into 

anomalous transport [18] suggest a strong coupling of ion heat and momentum transport, with the 

diagonal transport coefficients being of similar magnitude. These experiments were performed using 

neutral beam heating which exerts a large torque on the plasma, and the understanding was that without 

external momentum input, the plasma rotation would be negligible. This picture radically changed 

through the discovery of the so-called intrinsic rotation [19-27], i.e. the finite rotation a plasma develops 
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without an external toroidal torque. The intrinsic rotation is of particular interest to a reactor plasma for 

which the external torque will be small. Subsequently, mechanisms of toroidal momentum transport have 

attracted much recent attention in the community, leading to a very rapid development in theory and 

modelling. This paper will give an overview of the developments in this relatively new area and puts them 

in a global perspective.  

Since toroidal angular momentum is conserved, its evolution equation can be written in conservative form  
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where the sum is over  all species  ,      is the toroidal angular rotation frequency,         is the 

particle mass (density),   is the major radius,   is the radial coordinate (a flux label), V is the volume, 

        ,   is the toroidal momentum flux,    is the particle flux,    is the external momentum 

source, and the brackets {} denote the flux surface average. The particle flux enters when decomposing 

the stress  
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where   is the velocity,   is the toroidal angle, the overline denotes an average over a time interval long 

compared to the eddy turn over time, and the tilde denotes a fluctuating quantity. Using the expressions of 

Ref. [28], retaining only the leading term and those quadratic in the potential fluctuations (pressure 

fluctuations do enter at a similar order [28,29] though) one obtains for the flux surface averaged toroidal 

momentum flux    
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where   is the magnetic field strength,    is the ExB velocity,   is the parallel coordinate,    is the 

parallel velocity,   is the electro-static potential, and   is the distribution function. The terms in the 

expression above can be ordered relatively to each other 1,        ,      (   ⁄ ), where   is the 

Larmor radius and    is the perpendicular wave vector. The first term in the brackets on the right hand 

side, i.e. the toroidal component of the parallel momentum flux, therefore, dominates, and we will 

concentrate on this term in the first part of this paper. Theory must develop an understanding of the fluxes 

in the equation above. For intrinsic rotation, the interest is in a momentum flux that is not proportional to 

the rotation gradient.  

 

2. Symmetry breaking  

Toroidal momentum transport is related to a breaking of symmetry [5,30,31]. As shown in [5,31] a 

symmetry in the gyro-kinetic equations is found under special limiting circumstances:  

1. Lowest order relevant     /R limit. This is often referred to as the local limit. Note that in this 

limit the parallel velocity nonlinearity does not appear. Also in this limit the turbulence is 

homogeneous in the plane perpendicular to the magnetic field.  

2. Zero toroidal velocity  

3. Zero parallel velocity gradient  

4. Zero ExB shearing rate (not considered in [5], but evident from the work of [32] )  

5. Up-down symmetric equilibrium 

The symmetry argument is briefly outlined below. The equation for a perturbed distribution (f) is given by 
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where field aligned coordinates         are used with   the binormal coordinate. The parallel velocity 

and magnetic moment ( ) are used as velocity space coordinates,    is the drift due to the 

inhomogeneous magnetic field,       〈 〉  ⁄  (   ) is the ExB drift due to fluctuating (background) 

potential 〈      〉 (    ), and FM is the Maxwell distribution shifted in the parallel velocity direction by 

the mean velocity       . The gradients of density and temperature are represented by    ⁄      

  and    ⁄      ⁄   The equation above is derived for a toroidally rotating plasma. Diamagnetic and 

neo-classical equilibrium effects are neglected in agreement with the lowest order    approximation. Note 

too that the magnetic field strength   appears instead of   , again in agreement with     .  

A transformation is constructed for which the parallel momentum flux changes sign, leaving the gyro-

kinetic equation invariant. The former is obtained through a change in the sign of the parallel velocity, i.e. 

      . From the parallel streaming term (second term in the equation above) it is clear that to leave 

the equation invariant also the coordinate along the field line must change sign     . This also leaves 

the fourth term on the left hand side invariant. However, the terms on the right hand side are invariant 

only if    is even in the parallel velocity, i.e. the equilibrium does not have a net parallel flow [condition 

2], and the gradient in the parallel velocity is zero [condition 3]. Turning to the drift due to the magnetic 

field inhomogeneity: In the local limit the drift depends only on the coordinate along the field line  

               
 

  
      

 

  
                                                                                                                                 

The equation is invariant if              which is true for a magnetic equilibrium that is up-down 

symmetric [condition 5]. However, even for an up-down symmetric equilibrium, the radial component of 

a vertical drift changes sign when going from the lower to the upper half of the equilibrium, i.e.       

       . The equation can be made invariant only through the transformation     . The latter 

transformation requires that the background ExB velocity is even in  , and hence there is no ExB shearing 

[condition 4]. Furthermore, the Maxwellian background must be even in   , which is satisfied in the local 

limit [condition 1]. With these transformations, the linear equation is invariant [5], but the nonlinear term 

still changes sign  
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The transformation [31]      and      changes the sign of all the linear terms, but leaves the 

nonlinear terms unchanged. Multiplying the original equation with -1, the set of transformations can then 

be seen to leave the equation invariant. The procedure has been outlined here for the electro-static 

collisionless case without considering the field equations. The extension to the electro-magnetic case with 

collisions, as well as the analysis of the field equations is, however, straight forward. In conclusion the 

gyro-kinetic    equation is invariant under the transformation  

                                                                                                         

provided the five condition mentioned at the beginning of the section are satisfied.  If 

[                                              ] is a solution of the gyro-kinetic equation, then 
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[                                                          ] satisfies the equation as 

well. Linearly they would grow with equal growth rate, and nonlinearly both solutions would occur with 

equal probability. The toroidal component of the radial parallel momentum flux (  
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of both solutions, however, has the opposite sign, and it follows that the net momentum flux is zero. In 

the nonlinear state this statement is of course only satisfied in a statistical sense.  

In linear theory, for the most unstable mode, the 

symmetry described above comes out directly through 

the symmetry of the linear mode, i.e. 

                                   as shown in 

top panel of Fig. 1 (for parameters see Ref. [33]). The 

potential is then symmetric in the midplane while the 

parallel velocity fluctuations are anti-symmetric. This 

yields zero net parallel momentum transport when 

integrating over the flux surface, with the flux 

generated at the top half of the torus being 

compensated by the bottom half.  

The symmetry property is a powerful tool in 

interpreting the momentum flux. First it has a direct 

consequence for the toroidal momentum flux in that 

there are no direct contributions to the flux driven by 

the density and temperature gradients. These gradients 

do not result in a breaking of the symmetry in the local 

limit. Second it allows for a systematic identification 

of the mechanisms that can drive momentum transport. 

All must be connected with violating one or more of 

the constraints mentioned at the beginning of this 

section. Indeed it has been found that a violation of 

each of the conditions given above can generate a 

momentum flux, although it must be stated that the 

breaking of symmetry is a necessary but not a 

sufficient condition.  

If the terms that break the symmetry are sufficiently 

small one can do a perturbation theory and arrive at a linear expression for the ion momentum flux 

(electrons are ignored here due to their small mass) 

       
     

       
     

       
      

                                                                                           

Here and in the remainder of this paper normalized quantities are used   
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Figure 1 (From Ref. [33]) Linear mode 

structure along the field line: Potential (black) 

and the parallel velocity (pink). The real part of 

the eigenfunction is given by the solid line while 

the dashed line gives the imaginary part. 

𝑠  𝜃  ⁄ 𝜋          corresponds to the low 

field side, while  s = -0.5,0.5 corresponds to the 

high field side. (Calculated with GKW [34]) 
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where   is the poloidal flux, and      √       is the thermal velocity of the ions. Note that the 

diagonal part is defined using the gradient of the angular rotation   and not with the gradient of the 

toroidal rotation velocity. Using the normalizations above   is the toroidal Mach number. The toroidal 

momentum flux consists of various contributions: the first term is the diagonal contribution (i.e. 

proportional to   ), the second is the Coriolis pinch (proportional to  ), the third is due to the ExB 

shearing (proportional to   ), the fourth is the effect of an up-down asymmetric equilibrium, and the fifth 

is the collection of all effects that require a higher order    term in the gyro-kinetic equation. The latter 

term is naturally    smaller compared with the first four, which is explicitly denoted by taking    out of 

the coefficient. Below, unless explicitly denoted otherwise, the quantities are normalized and the index N 

will be dropped. When the perturbation theory applies, all coefficients (                 are 

independent of the symmetry breaking terms (           . This linear form is reasonably well satisfied 

for the diffusion and pinch under experimental relevant conditions since the instabilities are dominantly 

driven by the density and temperature gradients. The ExB shear, however, shows a relatively strong 

nonlinear behaviour [35,36], and leads to the suppression of turbulence, i.e. reduces all the transport 

coefficients. Finally the shearing rate is related to the toroidal velocity shear. Using the radial force 

balance and the neo-classical expression for the poloidal rotation          , where   is of order 

unity and depends on the collisionality regime, one arrives at 
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where derivatives of the magnetic components have been neglected against the profile derivatives.  

Through the dependence of    on    the ExB shearing acts as a correction to the diagonal part of the 

momentum flux. The second term on the right hand side is independent of the toroidal rotation or its 

gradient, and is one order smaller in   . One might be tempted to consider the    terms in the toroidal 

momentum equation small under all circumstances. This is not necessarily justified. The expression for 

   for instance depends on the second derivative of the density and temperature profiles. Adopting 

      
 , as a simple estimate for the term in the square brackets, one recognises that the parameter in 

front of    varies from roughly 40 in the core to values larger than 1000 in the edge. While the ExB 

shearing can therefore be expected to be relatively small in the core under most conditions, this statement 

is certainly not true for the edge of the plasma where it could dominate the momentum flux.  

In conclusion the momentum flux in the core of a large machine can be expected to be described by  

        (   
  

 
  )             [        ⁄   ]                                                                                 

where the up-down asymmetry term and the particle flux have not been included since they are found to 

be small in the core (see below). This equation can also be understood to define a high flow regime. 

Assuming      (which is indeed roughly satisfied see below), one obtains  

                                 ⁄                                                                                                                      

In the high flow regime higher order correction in    can be neglected. Note that high flow here does not 

mean a Mach number close to 1. For experiments with neutral beam heating u = 01.-0.3, typically, and the 

high flow regime often applies. Interestingly, some spontaneous rotation experiments develop a healthy 

toroidal velocity with   reaching values up to 0.2 (See Fig. 2 of Ref. [26]), but there are intrinsic rotation 

experiments for which the low flow ordering is more appropriate. For turbulence suppression it is the high 

flow case that is of importance. Using the Waltz rule [2], estimating the growth rate to be 
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where   is a dimensionless quantity of order unity, and a similar gradient length for the rotation as for the 

temperature gradient          is assumed. With       and    ⁄     typically, it is clear that a 

substantially smaller    compared with        requires       .  The case for the stabilization of the 

resistive wall mode appears similar, though less severe, since a rotation        is predicted to be 

necessary to stabilize this mode [37] 

Note that the expression of the momentum flux in the high flow regime has a trivial solution    . To 

develop a finite plasma rotation a residual stress, i.e. a momentum flux independent of the rotation or its 

gradient, is necessary. For a large tokamak this mechanism would be expected to be active in the plasma 

edge. Once a seed rotation is provided, the pinch, as well as a possible reduction in the diagonal part due 

to the ExB shearing, will enhance the gradient of the rotation in the core of the plasma.  

 

3. Contributions to the momentum flux  

3.1 The diagonal contribution.  

A finite radial gradient in the angular frequency leads to a diagonal (diffusive) contribution. Early work 

based on fluid models already established a strong coupling between ion heat and momentum transport 

[18]. This coupling is expressed in the dimensionless Prandtl number (Pr) which is the ratio of the 

momentum and ion heat diffusivities         . The Prandtl number has more recently been assessed 

through linear [5,38,39], and nonlinear gyrokinetic simulations using adiabatic electrons [40,41] as well 

as with full electron dynamics [35,42,43] confirming a Prandtl number of order unity. The values reported 

however cover a range 0.24 - 1.2. This is in itself not entirely surprising since the values have been 

obtained for different plasma parameters, and the Prandtl number is not a universal constant. 

Nevertheless, flux tube simulations [44] yield a relatively weak dependence on plasma parameters, and 

therefore suggest that part of the range could be related to additional momentum transport mechanisms. In 

global simulations, for instance, finite    effects can enter, and for a purely toroidally rotating plasma the 

toroidal velocity shear is connected with an ExB shear which drives an additional flux. Furthermore, for 

global simulations large scale long lived zonal flows have been observed to influence the momentum flux 

[43]. These effects have not always been corrected for in the determination of the Prandtl number, 

perhaps explaining part of the range observed.  

3.2 The Coriolis pinch effect.  

The symmetry is also broken for a toroidally rotating plasma, leading to a momentum pinch [45,46]. In 

the local limit, the effect can be elegantly derived by transforming to the reference frame that moves with 

the plasma [45]. In this frame the plasma rotation is naturally zero, and enters the physics description only 

through the Coriolis and centrifugal forces. It is the Coriolis force (Fco) that is of main interest in the 

generation of momentum transport [47] and the centrifugal force will be neglected below. In a magnetised 

plasma this force generates a Coriolis drift velocity [48,45]  

                            
    

   
                                                                                                             

The plasma rotation then enters the gyro-kinetic equation only through this additional drift  
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which appears as a convection as well as an addition particle acceleration due to the drift in the gradient 

of the perturbed potential. Unlike the other drifts, the Coriolis drift velocity is linear in the parallel 
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velocity. When building moments of the gyro-kinetic equation, the drift due to the inhomogeneous 

magnetic field can be seen to couple the even moments of the distribution (density, temperature), but not 

even with odd moments. The Coriolis pinch, however, does, such that in its presence density and 

temperature perturbations over the convection term generate parallel velocity fluctuations. These are then 

transported by the ExB velocity, leading to a finite flux of parallel momentum. The second effect is due to 

the change in the parallel velocity due to the acceleration in the fluctuating potential. For an ITG with 

adiabatic electrons the two contributions lead to an inward pinch [45,33]. A fluid model yields 

     
  

  
     

 

  
                                                                                                                                                          

The Coriolis pinch effect then enhances the central rotation, independent of the rotation direction.  

The Coriolis pinch is present also in the laboratory frame, although it must obviously manifests itself 

differently. The theory in the Laboratory frame has been worked out in Ref. [46], where the two 

contributions mentioned above have been identified as thermoelectric and ExB compression. The theories 

of the co-moving and laboratory frame have been shown to be equivalent in Ref. [49]. The ExB 

compression effect can in the nonlinear regime also be described with the theory of Turbulence 

Equipartition [50,51].  

The study of the Coriolis pinch effect has also revealed 

that the breaking of symmetry is a necessary, but not a 

sufficient condition [33]. This is shown in the lower 

panel of Fig. 1. A linear gyro-kinetic calculation with 

adiabatic electrons reveals an asymmetric mode 

structure, but potential and parallel velocity fluctuations 

nevertheless arrange themselves to yield a zero 

momentum flux. This process is confirmed by nonlinear 

simulations (see Ref. [33]), and results from a finite 

parallel wave vector that exactly compensates the 

Coriolis drift effect. A finite Coriolis pinch requires the 

inclusion of kinetic electrons, which due to their 

trapping can prevent complete cancellation between the 

Coriolis drift effect and the parallel wave vector of the 

eigenmode. This leads to the counter intuitive result that 

the Coriolis pinch scales with the trapped electron 

fraction, i.e.   . It also explains the poor performance 

of the fluid models in which kinetic electrons are not 

accounted for, like Eq. (18) above, which generally over 

predict the momentum pinch by roughly a factor 2. 

Parameter dependences of the pinch from linear gyro-kinetic simulations are shown in Fig. 2. Similar to 

the fluid model, the density gradient leads to an enhancement of the pinch.  The Coriolis drift is in the 

vertical direction, and similar to the curvature drift, the mode needs to be localized on the outboard side of 

the surface for it to have an effect. A reduction in the Coriolis pinch is therefore observed when the mode 

is less localized. This explains the decrease of the pinch with the perpendicular wave vector, the magnetic 

shear and the safety factor. It is to be noted that all these dependencies mean that the pinch effect is 

expected to decrease towards the core of the plasma where the safety factor, magnetic shear, trapped 

Figure 2 (From Ref. [45]) parameter 

dependence of the Coriolis pinch from linear 

gyro-kinetic simulations (GA-STD [2] case) as 

a function of 𝑅 𝐿𝑁 (+), magnetic shear     (*), 

safety factor (o), temperature gradient 

(diamond), and poloidal wave vector  𝑘𝑦𝜌𝑖 
(square) 
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particle fraction and density gradient are smaller. A pinch effect is also observed for the Trapped Electron 

Mode (TEM) [52], although the pinch effect is smaller in this case.  

3.3 The particle flux effect.  

The particle flux appears in the equation for the toroidal angular momentum conservation. Essentially, 

one can think of the particles carrying their individual momentum with them when they move radially 

outward. Knowledge of the particle flux, which is well studied [53-56], directly allows for an evaluation 

of this contribution. Under stationary conditions with central Neutral Beam heating (NBI) the particle flux 

is outward and will reduce the total plasma angular momentum. Note that this mechanism, like the 

diagonal part and the Coriolis pinch, is not able to provide a seed rotation, since the flux of momentum is 

proportional to the background rotation.  Due to the small particle fuelling, the particle flux under will be 

relatively small under experimental relevant conditions. For NBI heated plasmas      , where   is the 

heat flux and   is the energy of the injected particles, one can estimate the ratio of the particle flux term 

against the diagonal contribution 

     
   

   

          
   

   

    
  

     

  
 

  

  

 

 
                                                                                                          

where          , and in the second step       and            have been used. Since 

      the particle flux term is usually only a few per cent compared the diagonal contribution. Of 

course, in the edge of the plasma the influx of neutrals might enhance the effect, and it could possibly be 

important.  

3.4 ExB shearing  

Background ExB shearing breaks the       symmetry and can induce a flux of toroidal momentum 

[32,57,58,35,36]. Note that this symmetry breaking induces an asymmetric parallel mode structure.  The 

process can, in simple terms, be understood as follows. The shearing rotates the eddy structures increasing 

the perpendicular wave number which leads to stabilization of the mode. However, the magnetic field 

also has a shear and the mode can ‘escape’ the rotational shear by moving along the field such that the 

magnetic shear undoes the ExB shear. It thereby shifts the position of maximum wave amplitude away 

from the low field side leading to an asymmetry in the parallel mode structure. Indeed the momentum flux 

changes sign with the sign reversal of the magnetic shear [57,58,36], although the result is not exact, i.e. 

Figure 3 (From Ref. [36]) Left: Ratio of the transport coefficients 𝑀𝜑  𝜒𝑖. Right: effective Prandtl 

number as a function of the parallel velocity gradient with the ExB shear adjusted to have a purely 

sheared toroidal rotation, i.e. with zero poloidal rotation 
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symmetry breaking persists at zero magnetic shear, due to another subsidiary effect causing the 

asymmetry in the parallel mode structure. 

The effect of ExB shearing has been studied through nonlinear gyro-kinetic simulations. The ratio of the 

coefficients       is shown in the left panel of Fig. 3 as a function of the ExB shearing rate normalized 

to the maximum growth rate of the modes, for various values of the magnetic shear. The ratio       is 

of order unity confirming (part of) the scaling discussed earlier. For small shearing rates         the 

ratio       is independent of   , but at larger   ,       decreases with   . This is not due to the 

familiar ExB shear stabilization, since the ratio is insensitive to the turbulence level. The result of Fig. 3 

rather shows that momentum transport due to ExB shearing becomes less efficient when background ExB 

shearing strongly stabilizes the transport. This nonlinear effect might complicate the interpretation of the 

edge of H-mode experiments where ExB shearing is strong. For         , the ratio      , 

furthermore becomes a function of    [36] and it appears that cases of strong ExB shearing require 

nonlinear simulations to assess the momentum flux.   

The ExB shear connected with the radial gradient in the toroidal velocity acts as a correction to the 

diagonal contribution of the momentum flux. Fig. 3 (right) shows the ‘total momentum diffusivity’  

       
    (   

  

 
  )                                                                                                                                             

normalised to the ion heat conductivity as a function of   . The different curves are for different values of 

       ⁄⁄ . For a sufficiently positive magnetic shear, the ExB shearing contribution always reduced 

the Prandtl number independent of the sign of the magnetic field or plasma current. The decrease can be 

quite substantial with values as low as   
        being reached. At larger values of    and, consequently, 

larger values of   the reduced efficiency of the ExB shear in driving momentum transport means that the 

various curves approach each other.  

3.5 Up-down asymmetric equilibrium  

An up-down asymmetric equilibrium naturally breaks the symmetry along the magnetic field and a finite 

flux of toroidal momentum results [59, 60]. In principle this symmetry breaking is connected with all the 

geometry quantities, but studies have revealed that the asymmetry in the curvature operator and 

perpendicular wave vector generate 80% of the effect. A significant flux is only obtained if the extension 

of the mode along the field is large enough to ‘feel’ the asymmetry. Consequently, a maximum in the flux 

is often obtained for a relatively long wave length         . The complex interplay between the 

asymmetry of the equilibrium and the localization of the mode has so far prevented the development of a 

simple scaling formula to 

quantify, or even to determine 

the sign of, the momentum flux. 

For a given case, the momentum 

flux changes sign when the sign of 

the magnetic field or plasma 

current is changed, or when the 

equilibrium is flipped upside 

down.   

Unlike the other leading    

effects, the up-down asymmetry 

generates a flux that is 

Figure 4 (From Ref. [59]) Left: the ratio of the coefficients 𝐶𝐹𝑆 𝜒𝜑  as a 

function of radius. Right: the equilibrium used and the safety factor 

profile as a function of radius.  
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independent of the rotation or its gradient, i.e. it can provide a seed rotation. Its magnitude depends on the 

magnitude of the asymmetry which is found to strongly decay when moving closer to the magnetic axis. 

Consequently, the effect is largest at the plasma edge as shown in Fig. 4. For the equilibrium, shown in 

the second panel of Fig. 4, the ratio of the coefficients        reaches unity close to the edge. When 

integrated over the whole profile it predicts a core rotation of        (without considering any other 

mechanism that could further enhance the rotation of the core). 

3.6 Higher order    terms.  

So far, the local limit or lowest order    approximation has been discussed. In higher order many different 

effects can break the symmetry. Or, perhaps better stated, there is no symmetry. The theory in this area is 

still under development and it appears that not all possible mechanisms have been explored. Known 

symmetry breaking mechanisms include: a radial profile variation of the turbulent amplitude (or more 

correctly the turbulent wave quanta density) [30], the parallel velocity nonlinearity (or polarization drift) 

[61,62], ExB shearing due to the pressure gradient contribution to the radial electric field [63], and neo-

classical effects [28].  

The parallel velocity nonlinearity enters the gyro-kinetic equation in higher order in   .  
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For the symmetry to hold, all terms in the gyro-kinetic equation must change sign under the general 

transformation of Eq. (7). It is clear, however, that the velocity nonlinearity does not and, consequently, 

can be expected to drive a toroidal momentum flux. Furthermore, the derivation of the momentum 

theorem for the full   gyro-kinetic equation shows that the second term on the right hand side of Eq. (3) is 

related to the velocity nonlinearity in the gyro-kinetic equation. (The    formalism discussed so far does 

not have an exact momentum conservation theorem. For full   gyro-kinetics see [28,29,64]). Applying 

the symmetry argument to this equation both the first and the third term vanish, but not the second. The 

parallel velocity nonlinearity, therefore, can act both through the second term in the equation above as 

well as through the higher order non-symmetric part of  . It has been shown [61] to generate a 

momentum flux comparable in magnitude to the ExB shearing connected with the pressure gradient 

contribution.  

An interesting new development is the coupling of turbulence and neo-classical effects [28]. The 

neoclassical correction to the distribution function is of order (   ⁄ )      ⁄   and therefore need not be 

kept in the lowest order    description. In next order it, however, appears and since the correction 

contains plasma flows along the magnetic field, it generates a momentum flux. This flux is expected to be 

larger by a factor       ⁄  compared to the turbulent induced fluxes and would then provide the 

dominant contribution to the momentum flux. An analytic treatment has shown [28] that in order to 

calculate this effect one needs to solve only the lowest order turbulence equation, i.e. the equation of the 

local limit, with the background distribution modified to include the neo-classical equilibrium. 

For all finite    effects, an accurate assessment of the magnitude of the fluxes through numerical 

simulations is still lacking. Such simulations appear to be necessary to ultimately decide which of the 

effects is dominant under what conditions.  

 

5. Conclusions  

Significant progress is made in recent years on the understanding of momentum transport in tokamak 

plasmas. The lowest order    effects have been identified, and through the symmetry argument we know 
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there are no other contributions at this order than the ones identified. A rough idea of their magnitude 

exists, and for some of the effects their interplay has been analysed. There is however a need for further 

exploration. The interplay between the various symmetry breaking mechanisms is insufficiently well 

understood. Determining the transport coefficients in a larger parameter range might perhaps not increase 

our physical insight further, but will help us to better understand how the theory matches experimental 

observations. Furthermore, electro-magnetic effects and instabilities other than the ITG have hardly been 

touched upon. For the plasma core, linear calculations reveal that electro-magnetic effects might have an 

impact on the Prandtl number [38]. For the plasma edge the impact of electro-magnetic effects is expected 

to be significant [65]. The trapped electron mode has been studied in Refs. [30,52], but certainly requires 

further study.  

The situation is less clear for the momentum transport to higher order in   . Understanding these transport 

contributions is essential for the understanding of the edge as well as the core of some intrinsic rotation 

experiments. The theory, however, is not easy to track analytically, and a detailed computational 

investigation is challenging. Furthermore, for the edge of the plasma the not well understood H-mode 

physics severely hinders the development of the theory. The way forward is undoubtedly the 

identification of those processes that dominate, rather than treating all possible processes. Dominant 

mechanisms in the edge are likely connected with the strong profile variation of density, temperature, and 

potential, and possibly with the change in the equilibrium close to the X-point.  

 

References  

[1] H. Biglari, P.H. Diamond, and P.W. Terry, Phys. Fluids B 2, 1 (1990). 

[2] R. E. Waltz et al., Phys. Plasmas 1, 2229 (1994). 

[3] A. Bondeson et al., Phys. Rev. Lett. 72, 2709 (1994) 

[4] E.J. Strait et al., Phys. Rev. Lett. 74, 2483 (1995) 

[5] A.G. Peeters, C. Angioni, Phys. Plasmas 12, 72515, (2005)  

[6] J.E. Kinsey, R.E. Waltz, and J. Candy, Phys. Plasmas 12, 062302 (2005)|  

[7] C.M. Roach et al., Plasma Phys. Control. Fusion 51, 124020 (2009) 

[8] S. Suckewer, et al, Nucl. Fusion 21 1301 (1981) 

[9] K. Burrell, et al., Nucl. Fusion 28, 3 (1988) 

[10] H. Weisen, et al., Nucl. Fusion 29, 2187 (1989) 

[11] S.D. Scott, et al., Phys. Rev. Lett. 64, 531 (1990) 

[12] A. Kallenbach, et al., Plasma Phys. Control. Fusion 33, 595 (1991) 

[13] N. Asakura, et al., Nucl. Fusion 33, 1165 (1993) 

[14] K. Nagashima, et al., Nucl. Fusion 34, 449 (1994) 

[15] K.D. Zastrow, et al., Nucl. Fusion 38, 257 (1998) 

[16] J.S. deGrassie, et al., Nucl. Fusion 43 142 (2003) 

[17] D. Nishijima, et al. Plasma Phys. Control. Fusion 47 89 (2005) 

[18] N. Mattor, Phys. Fluids 31, 1180 (1988)  

[19] L-G. Eriksson et al. Plasma Phys. Control. Fusion, 39, 27 (1997). 

[20] J.E. Rice et al. Nucl. Fusion, 38, 1 (1998). 

[21] I.H. Hutchinson et al. Phys. Rev. Lett., 84, 3330 (2000). 

[22] G.T. Hoang et al. Nucl. Fusion, 40, 913 (2000). 

[23] J.S. deGrassie et al. Phys. Plasmas, 11, 4323 (2004). 

[24] Y. Sakamoto et al. Plasma Phys. Control. Fusion, 28, A63 (2006). 



12                                                                                                                                         OV/5-4 

 

[25] A. Scarabosio et al. Plasma Phys. Control. Fusion, 48, 663 (2006). 

[26] J.E. Rice et al. Nucl. Fusion, 47, 1618, (2007). 

[27] J.E. Rice, et al.,  Nuclear Fusion 38, 75 (1998)  

[28] F.I. Para, et al., Plasma Phys. Control. Fusion 52, 045004 (2010) 

[29] J. Abiteboul et al., Proceedings of the 37th EPS Conference on Plasma Physics (European Physical 

Society Vienna) P1.1001 (2010)  

[30] P.H. Diamond, Phys. Plasmas 15, 012303 (2008) 

[31] F. Parra et al., submitted to Phys. Plasmas (2010) 

[32] R.R. Dominguez, G.M. Staebler, Phys. Fluids B 5, 3876 (1993).   

[33] A.G. Peeters et al., Phys. Plasmas 16, 062311 (2009) 

[34] A.G. Peeters et al., Comp. Phys. Comm., 180, 2650 (2009) 

[35] R.E. Waltz, et al., Phys. Plasmas 14, 122507 (2007) 

[36] F.J. Casson, et al., Phys. Plasmas 16, 092303 (2009) 

[37] A.R. Polevoi et al., Porc. 19th Int. Conf. on Fusion Energy (2004) (Lyon 2002) (Vienna: IAEA) 

[38] D. Strintzi, et al., Phys. Plasmas 15, 044502 (2008) 

[39] J. Weiland et al., Nucl. Fusion 49  065033, (2009) 

[40] A.G. Peeters et al., Plasma Phys. Contr. Fusion 48, B413 (2006) 

[41] I. Holod, Z. Lin, Phys. Plasmas 15, 092302 (2008) 

[42] I. Holod, Z. Lin, Plasma Phys. Contr. Fusion 52, 035002 (2010) 

[43] W.X. Wang et al., Phys. Plasmas 17, 072511 (2010) 

[44] A.P. Snodin, In preparation for Phys. Plasmas 

[45] A.G. Peeters, et al.,  Phys. Rev. Lett. 98, 265003 (2007)  

[46] T.S. Hahm et al., Phys. Plasmas 14, 072302 (2007) 

[47] A.G. Peeters et al., Phys. Plasmas 16, 042310 2009 

[48] A.J. Brizard, Phys. Plasmas 2, 459 (1995)  

[49] A.G. Peeters et al., Phys. Plasmas 16, 034703 (2009)  

[50] T.S. Hahm, et al., Phys. Plasmas 15, 055902 (2008) 

[51] Ö. D. Gürcan, et al., Phys. Rev. Lett. 100, 135001 (2008)  

[52] N. Kluy, et al., Phys. Plasmas 16, 122302 (2009) 

[53] C. Angioni, et al., Phys. Rev. Lett. 90, 205003 (2003) 

[54] X. Garbet, et al., Phys. Rev. Lett. 91, 035001 (2003) 

[55] C. Estrada-Mila, et al., Phys. Plasmas 13, 074505 (2006) 

[56] C. Angioni, et al., Phys. Plasmas 16, 060702 (2009) 

[57] X. Garbet, et al, Phys. Plasmas 9, 3893 (2002) 

[58] Ö. D. Gürcan, et al., Phys. Plasmas 14, 042306 (2007)  

[59] Y.Camenen, et al., Phys. Rev. Lett. 102, 125001 (2009) 

[60] Y. Camenen, et al., Phys. Plasmas 16, 062501 (2009)  

[61] C.J. McDevitt, et al., Phys. Rev. Lett 103, 205003 (2009) 

[62] C.J. McDevitt et al., Phys. Plasmas 16, 052302 (2009)  

[63] O.D. Gurcan et al., Phys. Plasmas 17, 032509 (2010)  

[64] B.D. Scott, et al., ‘Energetic Consistency and Momentum Conservation in the Gyrokinetic 

Description of Tokamak Plasmas’ http://de.arxiv.org/abs/1008.1244 Submitted to Physics of plasmas.  

[65] C.J. McDevitt et al., Phys. Plasmas 16, 012301 (2009) 

[66] P.H. Diamond et al., Nucl. Fusion 49, 045002 (2009)

http://de.arxiv.org/abs/1008.1244

