TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>iii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>v</td>
</tr>
<tr>
<td>WASTE MANAGEMENT TOPIC CODES</td>
<td>viii</td>
</tr>
<tr>
<td>ABSTRACTS</td>
<td>1-107</td>
</tr>
</tbody>
</table>

Brazil .. 1
Finland .. 5
Germany ... 6
India .. 16
Korea, Republic of ... 27
Mauritius ... 28
Russian Federation .. 29
United States of America ... 31

INDEX OF PRINCIPAL INVESTIGATORS Authors I1 – I4
INDEX OF TITLES .. Titles I1 – I3
INDEX OF DESCRIPTORS .. Descriptors I1 – I17
INDEX OF TOPIC CODES ... Topics I1 – I2
INDEX OF PERFORMING ORGANIZATIONS Organizations I1 – I5
INDEX OF COUNTRIES ... Country I1
FOREWORD

The research abstracts contained in the Waste Management Research Abstracts Volume 29 (WMRA 29) were collected between May 1 and October 15, 2004. The announced submission period was June 1 to September 30, 2004; however, because the WMRA submission process is Internet-based (discussed below), abstracts may be submitted at any time of the year.

The abstracts reflect research in progress, or planned, in the field of radioactive waste management. For abstracts of completed research and other published information, the reader is advised to consult one of the many available commercial or non-commercial bibliographic information services, such as the IAEA’s International Nuclear Information System (INIS). Please refer to the following URL for INIS:

http://www.iaea.org/programmes/inis/index.html

Though the information contained in this publication covers a wide range of programmes in various countries, the WMRA should not be interpreted as providing a complete survey of ongoing research in IAEA Member States. Enquiries for further information concerning a particular research abstract should be addressed to the author(s) at his/her institute.

The image that follows illustrates the number of abstracts published per year for the last six WMRA publications. Except for 2003, there has been a steady decline in the number of abstracts submitted to the IAEA.

The reduction in the number of abstracts per volume might be attributable to:

- decreased international interest in the WMRA, perhaps related to the variety of information sources on the Internet, and/or
- a higher rejection rate for abstracts (some submissions were rejected because key information was missing).
With the implementation of the Internet-based submission for WMRA, and combined with an automated “in-house” administrative system, abstracts in WMRA 25 through WMRA 29 were accessible via the Internet at the URL listed below as soon as they were authorized for publication by the WMRA Programme Officer.

http://www.iaea.org/cgi-bin/irais.showwmt.pl?wmwmra.wmt

Many abstracts for WMRA 29 were authorized and became accessible on the Internet within only a few days of the date that they were submitted to the IAEA.

Individual abstracts may be viewed via the cited URL. In addition, searches may be carried out to find and view abstracts according to various search criteria, such as by publication volume, by waste management topic code, by specific database fields (such as title, country, principal investigator), et cetera. As such, for WMRA 25 and onward, it is not necessary to wait until a collection of abstracts is published - abstracts may be viewed interactively via the Internet as soon as they are authorized.

Even though individual abstracts are directly accessible via the Internet, collections of abstracts in WMRA 29 and in future WMRA volumes are or will be published on CD ROM to assist persons that may have difficulty accessing abstracts via the Internet.

WMRA 29 is a collection of Adobe Acrobat PDF files. In addition to being published on CD ROM, WMRA 29 may be downloaded from the cited URL. After downloading during a brief on-line session, users can work with WMRA 29 offline. WMRA 23/24 to WMRA 28, also collections of PDF files, may be ordered on CD ROM or downloaded from the cited URL.

The database that holds the abstracts for WMRA 23/24 and onward also contains the abstracts for WMRA 22. It should noted that WMRA 22 data were converted and loaded from a different electronic format. Thus slight differences in content and print format may appear when compared to later WMRA volumes. Although already in printed form, WMRA 22 data were “back loaded” to enable full text search and query functions via the Internet at the cited URL. The collection of abstracts in WMRA 22 is available only in printed form, which may be ordered from the cited URL.

Volumes of Waste Management Research Abstracts are available free of charge, on request, to governmental and private organizations and to researchers. To order copies of WMRA volumes, please use the electronic request form on the cited URL or mail a request to:

WMRA Programme Officer
Waste Management Research Abstracts
Division of Nuclear Fuel Cycle and Waste Technology
International Atomic Energy Agency
PO Box 100
A-1400 Vienna
Austria

The collection of waste management research abstracts is made possible by the continued participation of researchers who are willing to invest the time and effort necessary to submit information about their research via the Internet. The work of the Resident Missions to the IAEA in Vienna and the other governmental organizations in Member States who co-ordinated the submission of these abstracts is greatly appreciated.

This report was prepared by G.W. Csullog and I. Pozdniakov, Division of Nuclear Fuel Cycle and Waste Technology.
INTRODUCTION TO WMRA 29

It is with pleasure that the International Atomic Energy Agency presents the twenty-ninth issue of the Waste Management Research Abstracts (WMRA). This issue contains 96 abstracts that describe research in progress in the field of radioactive waste management. The abstracts present ongoing work in various countries and international organizations. Although the abstracts are indexed by country, some programmes are actually the result of cooperation among several countries. Indeed, a primary reason for providing this compilation of programmes, institutions and scientists engaged in research into radioactive waste management is to increase international cooperation and facilitate communications.

Data provided by researchers for publication in WMRA 29 were entered into a research in progress database named IRAIS (International Research Abstracts Information System). The IRAIS database is available via the Internet at the following URL:

http://www.iaea.org/programmes/irais/

This database will continue to be updated as new abstracts are submitted by researchers world-wide. The abstracts are listed by country (full name) in alphabetical order. All abstracts are in English. The volume includes six indexes: principal investigator, title, performing organization, descriptors (key words), topic codes and country. Figure 1 provides a description of the elements of an abstract. Internet access to WMRA supports a variety of search functions and allows searching by words or phrases included in the texts of the abstracts. When performing searches, users should take note of the following conventions that are typically used in full texts:

- **isotope numbers**: \(^{60}\)Co, \(^{235}\)U etc. are represented by Co-60, U-235 etc.
- **chemical formulas**: UO\(_2\), H\(_2\)O, Fe\(_2\)O\(_3\) etc. are represented by UO\(_2\), H\(_2\)O, Fe\(_2\)O\(_3\), etc.
- \(m^2\) is represented by m\(^2\)
- \(m^3\) is represented by m\(^3\)
- \(ms^{-1}\) is represented by ‘m per s’ or ‘m/s’ and \(Bqm^{-3}\) by ‘Bq per m\(^3\)’ or ‘Bq/m\(^3\)’
- **exponentials** do not use superscripts; for example 10\(^3\) is written 1E3

A list of waste management topic codes can be found starting on page viii.
FIGURE 1 Elements of an Abstract (continued on next page)

1. **Title:**
 Development and in-Situ Testing of Redundant Fiber Optic Monitoring Systems

2. **Title in Original Language:**
 Entwicklung und in-situ Eiprobung redundanter faseroptischer Überwachungssysteme

3. **Topic Code(s):**
 181 -Methodologies, Analytical Methods, Measurements Instrumentation

4. **Abstract:**
 One of the issues to be solved in a geological repository is operational in-situ monitoring. Availability of appropriate monitoring tools is a major development objective, in order to ensure operational safety and in order to respond to a variety of other safety related demands. In-situ monitoring would provide the opportunity to increase confidence in the safety of the disposal system by verifying that the repository evolves in the manner predicted.

 Long-term effectiveness, low maintenance, reliable functioning with high accuracy, and resistance to various mechanical and geochemical impacts are major attributes of monitoring systems devised to be operated at least during the operational phase of a repository. In addition, low maintenance and automatic data acquisition without disturbing normal operation will help reducing significantly the operational costs.

 Due to these reasons DBE TECHNOLOGY is developing thermo-hydro-mechanical sensing systems based on fiber optic technology as the basis for monitoring systems at final disposal sites. Among the different sensing and multiplexing techniques available, the sensor development focuses on Fiber Bragg Grating and Intensity Modulation Sensing technology along with their corresponding multiplexing technique.

 This project is aimed at in-situ testing of fiber optic sensing systems in different geological formations and engineered barrier systems.

5. **WM Descriptor(s):**
 data acquisition systems; fiber optics; fibre optics; measuring instruments; optical fibers; optical fibres, optical systems; quality assurance; safety; technology development; temperature measurement

6. **Principal Investigator:**
 Jobmann, Michael W

 DBE Technology GmbH
 Eschenstrasse 55
 D-31224 Peine, GERMANY

 Tel: 05171431530 Fax: 05171431506 E-mail: jobmann@db.de

7. **Other Investigators:**
 Voet, Marc I.D.FOS Research e.e.i.g.

8. **Organization Performing the work:**
 DBE TECHNOLOGY GmbH
 Eschenstrasse 55
 D-31224 Peine
 GERMANY

9. **Program Duration:**
 From 2000/02/01 To 2004/09/30

10. **State of Advancement:**
 Research in progress

11. **Sponsoring Organization(s):**
 Bundesministerium für Wasserstoff und Entsorgung

12. **Organization Type:**
 Private industry

13. **Preliminary reports available:**
 No

14. **Associated Organization(s):**
 none

15. **Recent publication info:**
Figure 1 (continued from previous page)

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reference Number</td>
</tr>
<tr>
<td>2</td>
<td>Title</td>
</tr>
<tr>
<td>3</td>
<td>Topic Code(s)</td>
</tr>
<tr>
<td>4</td>
<td>Title in Original Language</td>
</tr>
<tr>
<td>5</td>
<td>Abstract</td>
</tr>
<tr>
<td>6</td>
<td>WM Descriptor(s)</td>
</tr>
<tr>
<td>7</td>
<td>Principal Investigator</td>
</tr>
<tr>
<td>8</td>
<td>Organization Performing the work</td>
</tr>
<tr>
<td>9</td>
<td>Other Investigator(s)</td>
</tr>
<tr>
<td>10</td>
<td>Organization Type</td>
</tr>
<tr>
<td>11</td>
<td>Program Duration</td>
</tr>
<tr>
<td>12</td>
<td>State of Advancement</td>
</tr>
<tr>
<td>13</td>
<td>Preliminary report(s) available</td>
</tr>
<tr>
<td>14</td>
<td>Sponsoring Organization(s)</td>
</tr>
<tr>
<td>15</td>
<td>Associated Organization(s)</td>
</tr>
<tr>
<td>16</td>
<td>Recent Publications Info</td>
</tr>
</tbody>
</table>
WASTE MANAGEMENT TOPIC CODES

10 - RADIOACTIVE WASTE
 100 - RADIOACTIVE WASTE - GENERAL
 101 - General policies
 102 - Programme Strategy, Planning and Management
 103 - Effluents and Discharges
 104 - Database & Information Systems, including Technology Transfer Systems.
 Technical Assistance and Costs
 105 - Waste Minimisation
 106 - Quality Assurance Aspects
 108 - Waste Management System Analysis
 109 - Waste Characterisation (Radionuclide Inventory Determination), including
 Computer Codes and Measuring Methods and Techniques
 110 - LOW AND INTERMEDIATE LEVEL WASTE FROM NFC FACILITIES
 111 - Gaseous Waste Treatment
 112 - Liquid Waste Treatment
 113 - Solid Waste Treatment
 114 - Waste Immobilization (Bituminization, Cementation, Including Tests of
 Properties, Leaching Studies)
 115 - Waste Packaging
 116 - Waste Storage
 117 - Waste Disposal
 118 - Waste Transportation (Methods, Containers, Transportation Means)
 120 - RADIOACTIVE WASTE FROM NON-NFC SOURCES
 121 - Gaseous Waste Treatment
 122 - Liquid Waste Treatment
 123 - Solid Waste Treatment
 124 - Waste Immobilization
 125 - Waste Packaging
 126 - Waste Storage
 127 - Waste Disposal
 130 - HIGH LEVEL WASTE
 131 - Gaseous Waste Treatment
 132 - Liquid Waste Treatment
 133 - Solid Waste Treatment
 134 - Waste Immobilization/Vitrification (including Heat Transfer, Leaching
 and Other Studies)
 135 - Waste Packaging (Canister Types, Materials, Corrosion Studies)
 136 - Waste Storage
 137 - Waste Disposal (including Spent Fuel)
 138 - Waste Transportation (Methods, Containers, etc.)
 140 - SPENT FUEL
 141 - Spent Fuel Immobilization/Conditioning
 142 - Spent Fuel Packaging (Canisters, Materials, etc.)
 143 - Spent Fuel Storage
<table>
<thead>
<tr>
<th>Code</th>
<th>Category</th>
<th>Subcategory</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>ENVIRONMENTAL IMPACT/ASSESSMENT STUDIES</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>ENVIRONMENTAL IMPACT/ASSESSMENT</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>Dispersion and Migration of Radionuclides</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>Dispersion and Migration Models</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>Gas Diffusion Studies</td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>Impacts from Landfill Sites</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>BIOLOGICAL UPTAKE AND TRANSFER</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>Biological Uptake Mechanisms and Models</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>ENVIRONMENTAL TRANSFER</td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>Environmental Transfer Models</td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>Microbial Effects</td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>Effects of Gaseous Releases</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>RADIOLOGICAL ASSESSMENT</td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>Radiological Assessment Models</td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>Environmental Risk Assessment</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>Long Term Environmental Impact</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>ENVIRONMENTAL MONITORING</td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>Monitoring Programmes</td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>Monitoring Techniques</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>FACILITY AND/OR SITE SPECIFIC STUDIES</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>FACILITY/SITE - GENERAL</td>
<td></td>
</tr>
<tr>
<td>301</td>
<td>General Planning and Management</td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>Site Survey and Characterization</td>
<td></td>
</tr>
<tr>
<td>303</td>
<td>Earth Science Models and Studies</td>
<td></td>
</tr>
<tr>
<td>304</td>
<td>Safety Assessment and Performance Studies</td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>Design, Construction, Commissioning</td>
<td></td>
</tr>
<tr>
<td>306</td>
<td>Barrier Studies and Tests</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>STUDIES FOR NEAR SURFACE DISPOSAL FACILITIES</td>
<td></td>
</tr>
<tr>
<td>312</td>
<td>Site Survey and Characterization</td>
<td></td>
</tr>
<tr>
<td>313</td>
<td>Earth Science Studies and Models</td>
<td></td>
</tr>
<tr>
<td>314</td>
<td>Safety Assessment and Performance Studies</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>Design, Construction, Commissioning</td>
<td></td>
</tr>
<tr>
<td>316</td>
<td>Barrier Studies/Tests/Impacts</td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>STUDIES FOR GEOLOGICAL REPOSITORIES</td>
<td></td>
</tr>
<tr>
<td>321</td>
<td>General Planning and Management</td>
<td></td>
</tr>
<tr>
<td>322</td>
<td>Site Survey and Characterization</td>
<td></td>
</tr>
<tr>
<td>323</td>
<td>Earth Science Studies and Models</td>
<td></td>
</tr>
<tr>
<td>324</td>
<td>Safety Assessment and Performance Studies</td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>Design, Construction, Commissioning</td>
<td></td>
</tr>
<tr>
<td>326</td>
<td>Barrier Studies/Tests/Impacts including Near Field Effects</td>
<td></td>
</tr>
<tr>
<td>327</td>
<td>Waste Emplacement</td>
<td></td>
</tr>
<tr>
<td>328</td>
<td>Natural Analogue Studies</td>
<td></td>
</tr>
</tbody>
</table>
330 - STUDIES FOR LANDFILL SITES
 331 - General Planning, Regulatory Concern, Limits
 332 - Site Characterization, Disposal Technologies
 333 - Landfill site remedial actions

40 - DECONAMINATION AND DECOMMISIONING (D & D)
 400 - D&D - GENERAL
 401 - D&D Programme Strategy, Planning and Management
 402 - Nuclear Power Reactor Decommissioning
 403 - Research Reactor Decommissioning
 404 - Non-Reactor Facility Decommissioning

410 - DECONTAMINATION TECHNOLOGIES
 411 - Mechanical Decontamination Methods
 412 - Chemical Decontamination Methods
 413 - Electrochemical Decontamination Methods
 414 - Ultrasonic/Microwave Decontamination Methods
 415 - Decontamination by Melting
 416 - Other Methods and Techniques

420 - DECOMMISSIONING TECHNOLOGIES
 421 - Dismantling Techniques
 422 - Use of Explosives
 423 - Robotics, Remote Operations

430 - MANAGEMENT OF DECOMMISSIONING WASTE

50 - ENVIRONMENTAL RESTORATION
 501 - Project Planning and Management
 502 - Feasibility Studies
 503 - Environmental Risk Evaluation including models
 504 - Economic Studies
 505 - Criteria
 511 - Site Characterization
 512 - Unknown
 521 - Decontamination of Soils
 522 - Decontamination of Groundwaters
 523 - Waste Retrieval, Emplacement of Barriers
 524 - Management of Restoration Waste

60 - LEGAL, REGULATORY AND GOVERNMENTAL ISSUES
 601 - Criteria for Exempt Levels
 602 - Facility/Site Licensing Process
 611 - Waste Policy Acts
70 - PUBLIC INFORMATION/INTERACTION
 701 - Public Information Programmes, Public Participation
 702 - Information Centres
 703 - Education and Training
 704 - Socioeconomic Aspects

80 - ACTINIDE & TRANS MUTATION
 800 - Actinide & Transmutation Studies