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Recent new results of the high Mach flows associated with plasma detachment are presented on the basis of 
numerical simulations by a 2-D edge simulation code (the B2-Eirene code) and their comparisons with 
experiments in JT-60U W-shaped divertor plasma. High Mach flows appear near the ionization front away from 
the target plate. The plasma static pressure rapidly drops, while the total pressure is kept almost constant near the 
ionization front, because the ionization front near the X-point is clearly separated from the momentum loss 
region near the target plate. Redistribution from static to dynamic pressure without a large momentum loss is 
confirmed to be a possible mechanism of the high Mach flows. It has been also shown that the radial structure of 
the high Mach flow near the X point away from the target plate has a strong correlation with the DOD (Degree 
of Detachment) at the target plate. Also, we have made systematic analyses on the high Mach flows for both the 
“Open” geometry and the “W-shaped” geometry of JT-60U in order to clarify the geometric effects on the flows.  
 
1. Introduction 
 
To control plasma flows in the SOL and divertor region is one of the most important issues for 
the steady-state operation of the future fusion reactors. Plasma flows in the SOL and divertor 
region affect divertor performances in many aspects, such as, impurity shielding, helium 
exhaust, divertor in-out asymmetry, main plasma recycling, etc.  
 
High parallel flows associated with plasma detachment have been observed in several 
tokamak experiments[1,2]. Large Mach flows up to Mach 1 or even larger have been 
measured near the X-point away from the target plate in these experiments. (Henceforth, 
abbreviation “HMAD” will be used for such high Mach flows in the detachment state.)  
 
In Ref.[3], a 2D numerical study of HMAD by using the B2-Eirene code package[4-6] was 
done for the “Open” divertor geometry in JT-60U. To understand the physical mechanism of 
HMAD, detailed comparisons of the numerical results with those by a simple 1D analytic 
model were also made in Ref.[3]. Redistribution from static pressure to dynamic pressure 
without a large momentum loss has been shown to be a possible cause of HMAD observed in 
the numerical simulations. However, for the Open divertor geometry, flow measurements in 
the divertor region were not made. It was impossible to make the direct comparisons of the 
numerical results with the experimental results.  
 
Recently, flow measurements with the fast movable Mach probe near the X-point have been 
made for the “W-shaped” divertor geometry in JT-60U[2]. To verify the physical mechanism 
discussed in Ref.[3] and to obtain more robust conclusions, comparisons with the 
experimental measurements are indispensable. In the present study, we have done the 
numerical calculations for the W-shaped geometry and their direct comparisons with the 
experimental results are made. In addition, geometric effects on HMAD are studied by 
comparing the numerical results for the W-shaped geometry with those for the Open 
geometry.  
 
 
 



2. Numerical Model 
 
Typical L-mode discharges for the Open divertor (Open-Div) and the W-shaped divertor 
(W-Div) geometry with similar main plasma parameters were chosen to evaluate the 
geometric effects on HMAD. Figure 1 shows the numerical grid near the divertor region for 
(a) the Open and (b) the W-shaped geometry. Bulk ion species D+, all carbon impurity ion 
species C+ - C6+, and neutral species D, D2, C are considered in the analysis. At the core 
interface boundary, i.e., at the innermost flux surface of the grid inside the separatrix in Fig.1, 
the bulk ion density nD and the total input power Pin are specified. For the boundary 
conditions of the target plate, the usual Bohm condition is used. The remaining simulation 
models/conditions, such as transport model, are almost the same as those in Ref.[3]. To 
simulate the attached state and the detached state, nD has been changed for each numerical run, 
while the remaining conditions are kept fixed.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Numerical grid near the X point in the divertor region: 
(a) Open divertor geometry (Open-Div) and (b)W-shaped divertor geometry (W-Div). 

 
3. HMAD in the W-shaped Divertor Geometry and Its Physical Mechanism 
 
Figure 2 shows 2D spatial profiles of the parallel flow velocity u// for D+ near the X-point in 
the W-shaped divertor. The spatial profiles are compared between (a) the attached plasma case 
(nD=1.0×1019 m-3) and (b) the detached plasma case (nD=2.0×1019 m-3). The total input power 
(Pin=2.5 MW) is the same for both cases. The flow velocity is shown as the local Mach 
number ( // / sM u C≡ ), i.e., u// is normalized by the local isothermal sound speed Cs. In Fig.2, 
the positive direction of the velocity is defined as the direction from the inner divertor plate to 
the outer divertor plate in the edge plasma region. Thus, the negative sign means the flow is 
directed towards the inner target plate, while the positive sign means it is directed towards the 
outer plate.  
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) attached state                           (b) detached state 
Fig.2 2D spatial profiles of parallel Mach number in the divertor region for the W-Div. 



In the attached plasma case, the Mach number in the bulk of divertor region is still low as 
shown in Fig.2(a). The Mach number reaches M~1 only near the target plate. On the other 
hand, in the detached plasma case, high Mach flows appear near the X-point away from the 
target plate. 
 
To understand the formation mechanism of HMAD in Fig.2(b), basic divertor characteristics 
are compared between (a) the attached state and (b) the detached state in Fig.3-Fig.5. Typical 
2D profiles of Te and ionization source Si (D+ions/m3/s) are shown, respectively, in Fig.3 and 
Fig.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) attached state                          (b) detached state 
Fig.3 2D profiles of electron temperature Te in the divertor region for the W-Div. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) attached state                          (b) detached state 
Fig.4 2D profiles of the ionization source density Si in the divertor region for the W-Div. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) attached state                          (b) detached state 
Fig.5 2D profiles of the momentum loss density Sm in the divertor region for the W-Div. 



In the attached case, Te is still high in the divertor region and Si is localized near the target 
plate. On the other hand, in the detached case, Te drops rapidly towards the target plate and 
becomes Te<5eV in front of the target plate. Due to this large decrease in Te, the ionization 
front moves away from the target plate as shown in Fig.4(b). The HMAD region in Fig.2(b) is 
almost coincident with the ionization region in Fig.4(b) where the static pressure drops 
strongly due to the large decrease in Te. Figure 5 shows 2D profiles of the momentum loss Sm 
(N/m3) for D+ ion fluid due to the interaction with neutrals, e.g., CX-collision. In the detached 
case, it should be noted that the region where Sm is large in Fig.5(b) is almost separated from 
the ionization region in Fig.4(b). As a result, the total pressure is kept almost constant along 
the field line near the ionization region away from the target. Thus, the pressure gradient force 
due to the large drop of the static pressure possibly drives HMAD near the ionization front, 
i.e., redistribution from static pressure into dynamic pressure is a possible cause of HMAD 
observed in the simulation.  
 
4. Comparison with Experiments and Effect of Divertor Geometry on HMAD 
 
The radial profiles of the parallel Mach number are shown, respectively, in Fig.6 (a) for the 
Open-Div and Fig.6(b) for the W-Div. The M-profiles are plotted along the path shown in 
Fig.1(a) and (b) by arrows. The following interesting common features can be seen; 1) as the 
separatrix electron density nsep at the mid-plane increases, the Mach number becomes larger, 
2) the Mach number first starts increasing near the separatrix and then the peak moves 
radially outward, and finally, 3) the peak value becomes quite large (M ~ 1). In the W-shaped 
geometry, the radial profiles of the parallel flow were measured by the fast movable Mach 
probe near the X point[2]. The measurements were done along almost the same path in the 
numerical simulation. The experimental results are shown in Fig.6(c) for each line average 
density n e  of the main plasma. The Mach number is estimated from the probe data by using 
the Hutchinson’s formula[8].  
 
 
 
 
 
 
 
 
 
 
 
   

 (a)Open-Div (numerical result)  (b)W-Div(numerical result)  (c) W-Div (Experimental result) 
Fig.6 Radial profiles of the Mach number near the X-point in the outer divertor region. 

 
The qualitative features obtained in the numerical simulation, i.e., 1), 2) and 3) described 
above, agree well with the experimental results in Fig.6(c). For the largest n e  in Fig.6(c), the 
impurity radiation near the X point is enhanced (X-point MARFE) and the detachment region 
is extended more radially outward from the separatrix in comparison with the case of n e =2.6 
×1019m-3. Also in the simulation, X-point MARFE appears for a larger nsep than in Fig.6(b) 
and the peak of the M-profile moves further outward and the peak value becomes larger.  
 
The radial M-profiles for the Open-Div and the W-Div in Fig.6(a) and Fig.6(b) have a close 
relation to the detachment characteristics. To make a discussion more quantitative, Fig.7 
compares the radial profiles of the DOD [7] at the target plate. The DOD value at each point 
on the target plate is mapped to the upstream point in Fig.1 where the radial M-profile is 
plotted. The DOD is a figure of merit for the particle flux detachment. The DOD 



2( / )sep dCn≡ Γ  is defined by the ratio of the particle flux in the attached state, which scales as 
Cnsep

2 (C is a proportional constant), to the particle flux dΓ in the detached state. Thus, if the 
DOD becomes larger than unity, then the detachment starts. The value larger, the detachment 
becomes deeper. At the low and the medium nsep, the plasma is still attached besides the 
region very close to the separatrix for the Open-Div, while the detachment has already started 
in relatively wide region for the W-Div. However, at the highest density case, the DOD profile 
is more peaked for the W-Div. The radial extent of the high Mach flow with M~1 for the 
W-Div is also more peaked than that for the Open-Div as shown in Fig.6 (a) and (b). In the 
Open-Div without the baffle plate and the doom structure, recycling neutrals are relatively 
free and tend to spread out radially. The DOD values for the Open-Div near the separatrix 
become smaller than those for the W-Div, while they become larger at the outer part of the 
target plate. As a result, the DOD profile becomes broader for the Open-Div. 
 
 
 
 
 
 
 
 
 
 
 
                       (a) Open-Div                           (b) W-Div 

Fig.7 Radial profiles of the DOD (Degree of Detachment) at the outer target plate. 
 

5. Conclusions and Future Study 
 
In the numerical simulations for the W-shaped divertor geometry, HMAD appears near the 
ionization front away from the target plate, where Te rapidly drops, as in Ref.[3] for the Open 
divertor geometry. Direct comparisons with the experiments in the present study strongly 
support our explanation for the formation mechanism of HMAD proposed in Ref.[3]. In 
addition, by comparing the radial profiles of DOD at the target plate with those of the Mach 
number away from the target plate, it is shown that the radial profile of HMAD has a strong 
correlation with the DOD at the target plate.  
 
However, in the experiments, relatively large Mach flows have been observed even in the 
attached state. The cause of such relatively high Mach flows in the attached state has not been 
clearly understood yet. One of the possible causes is effect of various kinds of drift in the SOL 
and divertor region. These effects are not taken into account the present analysis. In the future, 
these effects will be taken into the analysis.  
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