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Abstract: The problem of the canonical profiles for a tokamak plasma with arbitrary cross-section is considered,
using the principle of the free plasma energy minimum with conservation of total current, and the principle of
profile consistency. The corresponding critical temperature gradients are found. The developed transport model
is validated by comparison with discharges from various tokamaks. The scalings for relative temperature
gradients are proposed.

1. Introduction

B.B. Kadomtsev [1] and other authors [2, 3] in 1986 analyzed the problem of relaxed states in
tokamaks. To describe this state, two principles were used in [1-4]: 1) the principle of the free
plasma energy minimum with the constraint of total current conservation and 2) the profile
consistency principle. This problem was considered in a circular plasma cylinder and its
solution was called the canonical profile. In the present work we solve the problem of the
canonical profiles for a tokamak plasma with arbitrary cross-section, using the two
aforementioned principles. We deduce the Euler differential equation for the canonical profile
of the µ(ρ) = 1/q(ρ) function and discuss the possible boundary conditions. Then, using the
canonical profile of the current density jc(ρ), we calculate the critical gradients for the
temperature and create the transport model for the electron and ion temperatures and density.
The model is validated by comparison with discharges from various tokamaks.

2. Canonical profile for a tokamak with arbitrary aspect ratio and cross-section shape

The free energy functional with the constraint of total current conservation can be written as:

F = ∫ π
V

pol /B 8( 2 +p/(γ - 1))d3x + λ1 ∫
S

dSj , (1)

where Bpol is the poloidal magnetic field, p is the plasma pressure and λ1 is a Lagrange
multiplier to be defined by the boundary conditions. The self-consistency principle allows us
to reduce the problem (1) to a one-dimensional one. Assuming that the profile consistency
conditions are valid in the toroidal plasma, we can write

p=p(µ), j=j(µ), j(µ)=γ p(µ), µ=1/q (2)

where γ = const(ρ). The minimization of F taking account of (2) leads to the Euler equation:

ρ2G ∂µ 2
c /∂ρ + (λ/2) ∂/∂ρ ((1/V′) ∂⁄∂ρ(V′Gρµc))=С ρµc′/V′. (3)

Here V′ and G=R2<(∇ρ )2/r2> are the metric coefficients, which can be found from the solution
of the equilibrium problem, V is the plasma volume, prime ′ means the derivative with respect
to ρ, the multipliers С and λ are defined by the boundary conditions, and subscript “с”
corresponds to the canonical profile. The boundary conditions for the circular cylinder were
discussed by Kadomtsev [1]. They describe the situation when the real physical boundary
conditions do not influence the processes in the plasma core. We put the boundary conditions
for the toroidal plasma as follows [5]

µс(0) = µ(0), µс′(0) = 0, µс(a) = µ(a), Xc=XK = µ(a)/µ(0), (4)
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where µ(ρ) is the solution of the transport problem, Xc ≡ ic(a)/(2Gaµc(a)) is the impedance of
the first order, XK is the impedance for the Kadomtsev case, ic=(µ00R/B0)⋅jc is the
dimensionless current density. In order to create the transport model, we have to find the
canonical profiles for the electron temperature Tc(ρ) and density nc(ρ). We assume that in the
relaxed quasi-steady state, the profiles of the current and the electron temperature should be
close to the canonical profiles, and, hence, the canonical profiles jc(ρ) and Tc(ρ) should be

linked approximately by Ohm’s law: jc(ρ) ~ T 3/2
c . From this, using (2), we obtain:

Tc ~ j 32 /
c , nc ~ T 21 /

c ~ j 31 /
c (5)

The dimensionless critical gradients for the temperature and density can be defined using (5):

ΩTc ≡ R/LTe ≡ -R Tc′/Tc = -2/3 R jc′/jc, Ωnc≡ -R nc′/nc= -1/3 R jc′/jc, (6)

Calculations show that the canonical profiles become flatter with lowering of the aspect ratio
A (FIG. 1) or with increasing of the elongation k. A similar tendency for the experimental
profiles of the electron temperature was mentioned in our previous works [6-8]. The
procedure of canonical profiles calculation is described in more details in [9].

FIG. 1. Canonical profiles of µc/µ(0) (a) and critical gradients -RTc′/Tc (b) for large, R/a=5,
and moderate, R/a=3, aspect ratios.

3. Canonical profile transport model (CPTM)

The set of transport equations consists of the equations for the electron and ion temperatures
and for the poloidal magnetic field. For simplicity we omit the equation for the plasma
density. The equilibrium is obtained by the solution of the Grad-Shafranov equation. The
canonical profiles are obtained by the solution of Eq. (1) with soft boundary conditions (2).
The general flow chart of the CPTM is shown in FIG. 2.

FIG. 2. Flow chart of the canonical
profile transport model.

We put ΩTci =ΩTce =ΩTc and assume the following form of the heat fluxes for the L-mode:

Qk=Q an
k +Q PC

k (k = i, e) (7)

Q an
k = -κ an

k ∂ρ
∂ kT ,   κan

k =nχ an
k ,  Q PC

k = κ PC
k (Tk / R)(ΩTk - ΩTc) H(ΩTk - ΩTc) (8)

Here H(x) is the Heaviside step function: H(x)=1, if x≥0, H(x)=0, if x<0, ΩTk = -R Tk′/Tk is the
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relative temperature gradient. We choose the following transport coefficients [6-8]:

κ PC
k =α PC

k (1/M)(a/R)0.75 q(a/2)qcyl(a)(Tk(a/4))0.5 n (3/R)1/4/Bt=const(ρ) (9) 

χ an
e =const(ρ)= e

~α
Ran

aTe

)2/(

/2))(( 2/1
χ an

i =χ neo
i qcyl =

RI

Ba

p

t
25 (10)

α PC
e =3.5, α PC

i =5, e
~α ≈2. Here M is the relative mass of the main ions, k is the elongation, T

[keV], Bt [T], a and R [m], n [1019 m-3], χ [m2 s-1] and κ [1019 m-1s-1].

4. Validation of the CPTM

Here we analyze only the electron temperature profiles, and do not consider the ion data. At

first we compare the calculated Te and experimental T exp
e electron temperature profiles. In

parallel we compare the calculated and experimental relative electron temperature gradients

ΩTe= -RTe′/Te and ΩT
exp
e = -RT exp

e ′/T exp
e , and show also the critical gradient ΩTc= -RTc′/Tc.

We have chosen 11 DIII-D and JET shots contained in the ITER Data Base, the published
data for 7 ASDEX-U shots with off-axis ECRH [10-12], 3 shots from MAST and 2 shots
from T-10. We try to choose only the OH and L-mode shots, but apparently some of the
DIII-D, JET, and all MAST shots, are related to the H-mode. For all chosen shots we carried
out the modeling with the modified CPTM using the ASTRA code. Two types of metrics,
which characterized the deviation of calculated data from experimental ones, were used:
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FIG. 3. Profiles of the temperature (a),and the relative and critical gradients (b) in ASDEX-U.
.

FIG. 4. Profiles of the relative and critical gradients in DIII-D (a) and JET (b).
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FIG. 5. Profiles of the temperature (a), and the relative and critical gradients (b) in MAST.

FIG. 6. Comparison of experimental and FIG. 7. Experimental relative gradient
calculated relative gradients. vs. scaling parameter qA2/k(q+4).

As we noted before, modification of the CPTM consists of the change of the Kadomtsev

canonical profile µ K
c (ρ) to the solution of Eq. (3) for µc(ρ). In FIGS 3-5 we compare the

calculations and experimental results for ASDEX-U, DIII-D, JET and MAST. The quality of
our simulation for Te profiles is shown in FIGS 3a and 5a. The relative gradients
ΩTe= -RTe′/Te, ΩT exp

e =-RT exp
e ′/T exp

e and critical gradients ΩTc=-RTc′/Tc for all four devices are
shown in FIGS 3b, 4, and 5b. It is seen that these profiles are flat in the gradient zone;
therefore we can characterize them by magnitudes in the mid-radius. A comparison of
calculated and experimental values of ΩTe and ΩT exp

e is provided in FIG. 6. The error bar for
one of the ASDEX-U shots is also shown. We see that the experimental and calculated
relative gradients reasonably correspond to each other.

FIG. 8. Calculated critical gradient FIG. 9. Normalized deviation of Te from Te
exp

vs. scaling parameter qA2/k. vs. their linear deviation.
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The calculations show that the peakedness of the canonical profile increases if either the
aspect ratio A=R/a, or the q value rises. This peakedness also increases if the elongation k
diminishes. So the parameter qA2/k could be the scaling parameter for the relative gradients.
The power 2 for the aspect ratio is the consequence of the normalization by the major radius
in the dimensionless relative gradients. If we take into account the asymptote of the critical
gradient Ωc in the Kadomtsev case (R→∞), Ωc=

16/3⋅Aq/(q+4), then the scaling parameter can
be modified to qA2/(k(q+4)). In is unclear a priori which parameter is better, so we test them

both. The experimental values of ΩT
exp
e versus the scaling parameter qA2/(k(q+4)) are shown

in FIG. 7. Two points for the T-10 tokamak with circular plasma cross-section and large
aspect ratio A=5 are also shown. It is seen that all points are positioned in the vicinity of some
curve with decreasing slope. FIGURE 8 shows the dependence of the calculated critical
gradient Ωc on the parameter qA2/k. We see that in this case the scattering of points is also not
large. So now it is impossible to make a final choice concerning the scaling parameter for
relative gradients. FIGURE 9 shows the quality of simulation by the CPTM. We see that the
linear deviations (11) are twice as large as the normalized deviations (12). This means that
this model describes the gradients better than the absolute temperatures values.

5. Conclusion

The modified CPTM was validated using experimental data from several tokamaks. The
modification is based on a more general approach, which allows us to find the canonical
profile µc(ρ) for tokamak plasmas with arbitrary cross-sections and aspect ratios. The critical
temperature gradient Ωc=R/LTc, which could be included into the heat fluxes, can be expressed
through the obtained canonical profile. Modeling of the chosen set of shots has shown a good
correlation between the experimental and calculated electron temperature profiles. Analysis of
the experimental and calculated relative temperature gradients ΩTe= -RTe′/Te allows us to find
the possible scaling variables (qA2/k, qA2/k(q+4)), which can determine the absolute values of
ΩTe. This fact allows one to explain the visible contradictions in the interpretation of the
experimental data from DIII-D and several European tokamaks [10-12].

This work was supported by Grant RFBR 00-15-96536, Minatom RF and the UKAEA
Agreement QS06588.
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