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Abstract. In the present paper, we address the issue of fast ion and fusion product transport in conditions that

are typically relevant for burning plasmas operating in so called Advanced Tokamakregimes. Our results have

direct implications, e.g., on the choice of current profiles for ITER steady state operations. We demonstrate that

in a Tokamak equilibrium with hollow-q profile, in general, two types of EPM (Energetic Particle Modes [1]) gap

modes may exist near the minimum-q surface (q = q0), characterized by opposite signature in frequency: one

with upwards chirping frequency [2] and the other with downward chirping frequency as q 0 drops. It is shown that

EPM gap modes are described by the same dispersion relation of the usual resonant EPMs [1] and that they can

indeed be considered as the same mode with, however, different dominant damping mechanisms. This work also

presents a discussion of EPM non-linear dynamics with respect to energetic ion transport in tokamaks with hollow

q-profiles. Numerical simulations based on a Hybrid MHD-Gyrokinetic Code (HMGC) [3, 4], demonstrate that,

above the EPM excitation threshold, fast radial redistribution of energetic ions takes place on a time scale that is

proportional to the inverse EPM growth rate (typically ≈ 100τ A, τA = R0/vA being the Alfvén time). The rapid

evolution of EPM mode structures and the associated fast ion transport is interpreted within the framework of the

relay runnermodel for non-linear EPM dynamics [5]. It is found that a sensitiveparameter for tokamak equilibria

with hollow-q profiles is q at the minimum-q surface, higher q corresponding to larger particle transport. This fact

has clear implications on the choice of current profiles in a burning plasma [6].

1. Introduction

From the point of view of EPM excitations, the plasma cross section in tokamaks with hollow
q-profiles is divided into three regions by the presence of the minimum-q surface [7]. Inner
and outer regions are obviously characterized by different values of magnetic shear and fu-
sion products/fast ion energy density. The plasma volume inside the minimum-q surface has
typically negative and often small shear. Here, the fast ion energy density is maximum, due
to the spatial localization of DT fusion cross section and of additional power input sources.
Meanwhile, the outer region has positive magnetic shear but small fast ion energy density. A
toroidal annulus, centered at the minimum-q surface, separates these two regions and is charac-
terized by peculiar properties of both EPM stability and mode structures. For a wave of toroidal
mode number n, it is possible to show that the width of the annulus is given by the inequality
s2 <∼ S2/n. Here, s ≡ rq′/q is the conventional definition of magnetic shear, prime denotes
derivation in the radial direction r and S 2 ≡ r2

0q
′′(r0)/q

2
0 is a measure of the concavity of the

q-profile at the radial location of the minimum-q surface, where r = r0, q = q0 and s → 0. In
this paper, we discuss the relationship of EPMs that are resonantly driven in the small but finite
shear region with those that are excited in the toroidal annulus at r0. Various relevant aspects in
this problem, involving both linear (Section 2) and non-linear physics issues (Section 3), will
be treated in the present paper.
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2. Excitation of resonant EPMs and EPM gap modes
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FIG. 1. Structure of the shear Alfv´en continuous spectrum near the minimum-q surface atr 0. From (a)

to (c), the value ofq0 decreases. Here,x ≡
√

nq′′0 (r − r0).
Consider modes localized near r0, where q has a minimum given by q0. Consider also a given
toroidal mode number n and a poloidal mode number m such that the normalized parallel wave
vectors ΩA,m ≡ nq0−m < 0 and ΩA,m−1 ≡ nq0−m+1 > 0. It is then readily demonstrated that
the condition under which continuum damping is minimized is that with −1/2 < ΩA,m < 0
and 1/2 < ΩA,m−1 < 1. In fact, this is the condition under which there is a frequency gap
between the (m,n) mode continuum, that has a local maximum at r0, and the (m− 1, n) mode
continuum, that has a local minimum at r0. For ΩA,m + ΩA,m−1 � r0/R0, the local (r � r0)
structure of the shear Alfvén continuous spectrum is shown in Fig. 1(a). There, it is evident
that the typical frequency gap between the local minimum of the (m − 1, n) mode continuum
and the local maximum of the (m,n) mode continuum is larger than the frequency shift due
to toroidal coupling. Thus, toroidal coupling between (m,n) and (m − 1, n) modes can be
neglected. The two modes, then, satisfy the following approximate dispersion relations, derived
from a variational principle [7]:

√
ΩA,m + Ω =

Sπ

25/2n1/2

(
2n

S2

Λm

ΩA,m
− 1

)
,

√
ΩA,m−1 −Ω =

Sπ

25/2n1/2

(
2n

S2

Λm−1

ΩA,m−1
− 1

)
, (1)

where Ω ≡ ω/ωA, ωA = vA/qR0, vA is the Alfvén speed, R0 is the tokamak major radius, and
Λm−1,Λm represent the resonant and non-resonant contribution of energetic particles. Equa-
tions (1) demonstrate that EPM gap modescan be excited near a minimum-q surface only in the
presence of an energetic ion population [2, 7]. They are valid for general fast ion distribution
functions; however, as JET experimental results with Ion Cyclotron Resonant Heating (ICRH)
in reversed magnetic shear discharges have recently attracted significant attention [2], in the rest
of this Section we will refer to such conditions, specifying Λm as

Λm � − q2R2
0

m2/r2
0

(
r0

R0

)1/2

v3
TH

8

π

∫ ∞

0

dz

1 + z2

∫ ∞

0
w1/2dw

∫ π

0
dθb sin θbIK (sin(θb/2))

×4πω

c2
e2

H

mH
J2

0 (λH)QF0H

∑
h

J2
h (λBH)

ω̄dH + hωBH

ω̄dH + hωBH − ω
. (2)
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Here, IK(sin(θb/2)) is the complete elliptic integral of the first kind, Jh, h = 1, 2, 3, . . . are

Bessel functions, θb is the trapped particle bounce angle, vTH ≡
√
TH/mH is the fast tail ion

thermal speed, w ≡ v2/2v2
TH , λH =

√
2wkθρLH

√
1 + z2, ρLH = vTH/ωcH , ωcH = eHB/mHc,

λBH =
√
wR0/r0θbzq0kθρLH , ω̄dH = kθρLH(vTH/R0)w and the bounce frequency ωBH =√

wr0/R0(vTH/q0R0). Moreover, integration in z accounts for the non-localresponse of fast
ions due to finite Larmor and banana orbit widths, QF0H = (2ω∂/∂v2 + k× b · ∇/ωcH)F0H ,
b=B/B, and F0H is the fast ion tail distribution function.

Note that the first of Eqs. (1) was originally derived in Ref. [2], where the expression of
Λm was obtained assuming that the fast ion toroidal precession frequency, ω̄dH , is such that
ω̄dH � ω [2]. In this limit, which applies in a variety of JET experimental conditions [2], the
non-resonant fast ion response dominates, Λm−1/Ω � Λm/Ω < 0, and Eqs. (1) predict that
only the (m,n) mode can be excited just above the local maximum in the Alfvén continuum
(Fig. 1(a)). A remarkable experimental evidence of this fact is the observation of Alfvén Cas-
cadesat JET, which are characterized by upwards chirpingfrequencies as the value of q0 drops
due to current diffusion [2]. In general, however, the the (m − 1, n) EPM gap mode can also
be excited just below the local minimum in the Alfvén continuum, and that would be character-
ized by downwards chirpingfrequencies as the value of q0 drops. Generally, a transition from
IReΛm < 0 to IReΛm > 0 results in a transition from the (m,n) EPM to the the (m − 1, n)
EPM gap mode excitation [7]. Equation (2) shows that IReΛm depends, among other parame-
ters, both on the velocity ratio vTH/vA and on the mode frequency. Experimental control on the
velocity ratio makes it possible to excite either one of the two EPM gap modes, as described by
Eqs. (1). However, the resonant energetic ion response (mode drive) also plays a crucial role.
Thus, (m,n) and (m − 1, n) EPM gap mode excitations are not mutually exclusive, and we
could generally expect the simultaneousobservation of both upwardsand downwards chirping
frequencies as the value of q0 drops. Depending on the experimental parameter range, one or
the other signature should dominate.

As ΩA,m + ΩA,m−1 → 0+ (which may occur when q0 drops), toroidal coupling effects become
more important (cf. Fig. 1(b)). The main modification of Eqs. (1) in this case is due to the
existence, at r = r0, of four nearly degenerate shear Alfvén waves at the frequency of the
toroidal gap in the Alfvén continuous spectrum. For detailed analyses we refer to Ref. [7],
where the EPM gap mode properties are discussed also when ΩA,m +ΩA,m−1 � −r0/R0, due -
e.g. - to a further drop in q0, with the radial structure of the continuous spectrum becoming that
of Fig. 1(c). In this case, the EPM gap modesmoothly changes from a radial structure localized
near x =

√
nq′′0(r−r0) = 0 and will eventually end up into a double-hump structure. This result

can be obtained analytically and, anticipating the numerical simulation results of Section 3.2, is
also evident from the radial structure of the Fourier harmonics in Fig. 8 (right).

The existence condition of EPM gap modes is that of vanishing local continuum damping, i.e.
that the l.h.s. of Eqs. (1) be real and positive definite. Dominant damping mechanisms are, in
this case, either kinetic, as radiative or ion Landau damping, or fluid, as nonlocal continuum
damping, which is a result of resonant excitation of the Alfvén continuum away from r 0 as it is
shown in Figs. 1. Figures 1 also suggest that non-local continuum damping should depend on
the mode frequency and, more precisely, decrease for increasing Ω. In fact, as it is demonstrated
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in Ref.[7], including this damping mechanism modifies the (m,n) mode dispersion relation
into: √

ΩA,m + Ω
[
1 + i exp

(
−4
√
−nΩA,m/S

)]
=

Sπ

25/2n1/2

(
2n

S2

Λm

ΩA,m
− 1

)
. (3)
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FIG. 2. Equilibrium fast-particle normal-
ized pressure andq-profiles.

From this expression, we note that non-local contin-
uum damping is important at low frequency and that
it becomes exponentially small for increasing −ΩA,m.
When the complex frequency shift due to energetic par-
ticles becomes comparable with the distance of the real
mode frequency from the Alfvén continuum accumu-
lation point, the l.h.s. of Eqs. (1) cannot any longer
be assumed as real and positive definite. Local con-
tinuum dampingis then finite and the mode acquires
the character of a resonant EPM[1]. Thus, resonant
EPMs and EPM gap modes are indeed the same mode
but with different dominant damping mechanisms. Res-
onant EPMs are generally excited at the radial posi-
tion where the fast ion drive, ∝ αH ≡ −R0q

2β ′
H , is

strongest, i.e. typically inside the minimum-q surface
where s < 0. The toroidal annulus of width ≈ (nq ′′0)

−1/2, centered at r0, and the small but finite
negative shear region inside it can be treated within a unified mathematical formalism, yielding
the same dispersion relation for resonant EPMs and EPM gap modes, which is valid for s = 0
as well as 0 < |s| < 1 [7]:√

(Ω2
A,m − Ω2)/Θm = (π/4) (2Λm/Θm − 1) , (4)

where Θm = s2 and ΩA,m = 0 for s �= 0, and Θm = S2ΩA,m/n for s = 0.

3. Non-linear EPM dynamics and fast-particle transport

In the present section, we analyze EPM non-linear dynamics with respect to both saturation
mechanisms and energetic particle transport by means of numerical simulation results obtained
with the Hybrid MHD Gyrokinetic code HMGC [3]. Here, we assume plasma equilibria with
shifted circular magnetic flux surfaces and an isotropic Maxwellian with constant temperature
profile for the velocity space distribution function of energetic ions. Furthermore, for the sake of
simplicity, in the specific simulations presented here, we consider full nonlinear wave-particle
interactions only, while neglecting nonlinear mode-mode couplings among different toroidal
mode numbers n. Fixed simulation parameters are n = 4, a/R0 = 0.1 (with a the minor radius
of the torus), ρLH/a = 0.01, vTH/vA|r=0 = 1 (energetic ion thermal speed normalized to the
Alfvén velocity, on-axis value), and energetic and thermal ion species are assumed to have the
same mass number.

The energetic ion radial pressure profile, used in the present analyses, is shown in Fig. 2, where
βH is the ratio of fast-ion and equilibrium magnetic field energy densities and βH0 indicates its
value on the magnetic axis. The peaking factor, βH0/〈βH〉, for such profile is βH0/〈βH〉 = 9.2,
where the volume averaged βH is defined as 〈βH〉 = 2

∫ 1
0 (r/a)βHd(r/a). The two modelq pro-

files, employed in the simulations, are also shown in Fig. 2. These profiles do not realistically
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refer to specific plasma equilibria, as e.g. ITER, and they were chosen in order to investigate
the role of q-profile parameters which are most relevant for energetic ion transport.

3.1. EPM excitation at different radial locations
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FIG. 3. Power spectrum and energetic-ion line pressure profile at two
different times: linear growth phase (top;τ = 120τ A0) and saturated
phase (bottom;τ = 354τA0).

For sufficiently peaked
pressure profiles, non-
linear simulations confirm
that resonant EPMs are
destabilized at the radial
location where αH is
maximum [7]. Numerical
results show that non-
linearly saturated states
are always characterized
by EPM gap modes at
the minimum-q surface,
even when resonant
EPMs are excited within
the minimum-q surface.
Scenarii that yield these
time-asymptoticsaturated
conditions continuously
vary between two lim-
iting cases [7]. Close
to marginal stability, the
transport time scale of en-
ergetic ions is longer than
the inverse growth rate of
both resonant EPMs and
EPM gap modes excited at

r0. In these conditions, EPM excitations at different radial locations are well described within
the theoretical formulation of Section 2, and the modes are characterized by independent non-
linear evolutions. This situation is depicted in Fig. 3, where the power spectrum

∑
m |φm,n(r, ω)|2

in the (r/a, ωτA0) plane and the energetic-ion line pressure profile, (r/a)βH(r)/βH0, are shown
at two different times: linear growth phase (top; τ = 120τA0) and saturated phase (bottom;
τ = 354τA0). Here, τA0 = R0/vA|r=0. The q profile (a) of Fig. 2 and βH0 = 0.010 have been
assumed along with a radially constant thermal-plasma density, corresponding to a radially con-
stant Alfvén velocity.

For strong drive, rapidly evolving resonant EPMs are radially displacing the fast ion source
towards the position where it can more easily destabilize weaker EPM gap modes. In this
second case, the characteristic time scale of EPM gap mode growth is longer than that of fast
ion transport: linear stability analyses are, thus, inadequate and the problem is intrinsically
non-linear, as it can be seen in Fig. 4 below. [6, 7].
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3.2. Fast ion Internal Transport Barrier and avalanches.
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FIG. 4. Linearly unstable (top) and saturated (bottom) phases for
βH0 = 0.025 and the other parameters as in Fig. 3.

In Fig. 4, an unstable
EPM [1], is excited inside
the upper continuum (top)
by the resonant interaction
with energetic ions. Its
saturation takes place be-
cause of a strong, convec-
tive, radial displacement
of the energetic ions. The
maximum of the power
spectrum then migrates
in frequency towards the
toroidal gap and radially
outwards. This occurs be-
cause the mode follows the
outward-moving βH max-
imum gradient and prop-
erly readjusts its frequency
in order to minimize con-
tinuum damping [6].

The fact that the rapid fast-
particle radial redistribu-
tion stops at the minimum-

q surface [6], suggests the existence of an energetic-particle Internal Transport Barrier (ITB),
analogous to that of the thermal plasma, for which the presence of a weak or negative mag-
netic shear region has the effect of reducing the local transport coefficients. The robustness
of such fast ion ITB can be seen in Fig. 5, where, for the q profile (a) of Fig. 2, the time-
asymptotic energetic particle radial distribution is not drastically altered with respect to that
of Fig. 4 despite that the drive has been increased by a factor two, βH0 = 0.05. Mean-
while, the properties of the fast-ion ITB crucially depend on the q profile [6]. Figure 6, in
fact, shows the simulation results in the saturation phase for the q profile (b) of Fig. 2 and
the other parameters same as in Fig. 4. There, the detrimental effect on both local and global
energetic ion confinement is macroscopic. In fact, the effect of increasing βH0 or modifying
the q-profile on fast ion transport is clearly visible in Fig. 7, where the fraction of particles
confined within a given flux surface is shown at initial equilibrium conditions (a) and in the
time-asymptotic non-linearly saturated phase for Figs. 4 (bottom), 5, and 6 (curves b, c and d,
respectively). Here, the definition of the fraction of particles confined within a given flux sur-
face is 2〈βH〉−1

∫ r/a
0 (r/a)βHd(r/a), since it coincides with the fraction of confined energy for

the present assumption of constant fast ion temperature profile. The time-asymptotic fraction
of energetic particles confined within the minimum-q surface located at r0/a = 0.525, which at
equilibrium is 99.8% (cf. Fig. 2), is 79% in the case of Fig. 4 and 65% in that of Fig. 5. The
global particle losses in the two cases are, respectively, 1.3% and 3.1%, indicating that particle
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transport results mainly in
radial particle redistribu-
tion. On the contrary, in
the case of Fig. 6, global
particle losses are 6.6%,
and the time-asymptotic
fraction of fast-ions con-
fined within the minimum-
q surface is 56%. These
results clearly indicate that
profiles with lowest qmin

(above qmin = 2 for
MHD stability reasons)
and highest q′′ exhibit the
best confinement proper-
ties of fast ions [6]. The
reason for this is that, for
a given value of β ′

H , the
mode radial width scales,
near the qmin surface, as
1/
√
nq′′ [7], while the typ-

ical orbit size is propor-
tional to qmin. Decreas-
ing the hollowness of the q
profile, while taking q(0)

and q(a) fixed, yields lower q ′′ and larger qmin values, and makes both the mode and the orbit
widths larger than in the deeply-hollow q-profile case. Moreover, the energetic-ion drive inten-
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sity, αH , scales as q2
min. The mode is then a more ef-

ficient scattering source for energetic-ion orbits even
in the relatively low βH case (as in Fig. 6 for βH0 =
0.025). All these facts provide useful insights into the
fundamental properties of fast-ion ITB at the minimum-
q surface and have clear implications on the choice
of current profiles in a burning plasma, suggesting
that good confinement of fusion products will set
constraints on the maximum radial location of the
minimum-q surface and on the value of qmin [6]. The
simulation results in Figs. 4-6 also shed some light on
the characteristic properties of energetic particle trans-
port when resonant EPMs are strongly excited. In
fact, there is evidence that non-linear EPM dynam-
ics produces an avalanche, i.e. the radial displace-
ment of an unstable propagating frontassociated with
rapid fast-particle radial redistribution which stops at
the minimum-q surface [6]. That this phenomenology
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occurs during EPM induced energetic particle transport is shown in Fig. 8. There, three succes-
sive time-frames are shown, which are taken from Fig. 4 simulation results in order to display
the radial mode structure evolution during the linear destabilization and non-linear saturation
phases. Different Fourier harmonics, |φm,n|, are displayed in different colors. As reference,
the αH deviation from the initial equilibrium profile, δαH , is also shown as it results due to the
non-linear EPM fluctuations. It is evident that the mixtureof poloidal harmonics that give the
global mode structure is changing in time as the fast-ion source is radially displaced, exactly as
it is conjectured in the relay runner model[5]. This model is a paradigm for strongly excited
resonant EPMs non-linear evolution. It is based on the mode particle pumpingmechanism [8]
and assumes that each dominant mode (poloidal harmonic 1) displaces energetic ions radially
and eventually becomes subdominant, replaced by the next mode in the same fashion as dif-
ferent runnersdo in a relay race. The agreement between simulation results of Fig. 8 and the
paradigm model is remarkable.
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FIG. 8. EPM radial structure and its various poloidal Fourier harmonic components are shown at three
different times,τ = 60τA0 (left), τ = 75τA0 (center) andτ = 90τA0 (right), for the simulation of Fig. 4.
TheαH deviation from the initial equilibrium profile,δα H , is also shown.
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