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Abstract Electron temperature gradient (ETG) driven instability in toroidal plasmas is studied

with gyrokinetic theory. The full electron kinetics is considered. The upgraded numerical scheme

for solving the integral eigenvalue equations allows the study of both growing and damping modes,

and thus direct calculation of critical gradient. Algebraic formulas for the critical gradient with

respect to ratio of electron temperature over ion temperature and to toroidicity are given. An

estimation for turbulence induced transport is presented.

1. Introduction

Recent observations on tokamaks have shown that, within internal transport barriers
(ITBs), electron thermal transport hardly changes while ion thermal di�usivity is reduced to
the neoclassical level. These �ndings support the hypothesis that, within an ITB, ion temper-
ature gradient turbulence is suppressed by E�B shear ow, whereas electron temperature
gradient (ETG) turbulence controls electron transport. As a result, ETG instability and
anomalous electron thermal transport have received intensive research attention in recent
years.

The critical temperature gradients for instabilities and the turbulent electron thermal
transport in the parameter regimes close to critical temperature gradients have been studied
in detail in experiments. [1] It seems apparent that critical gradient is one of the few

physics quantities for which results from the linear theory may be compared quantitatively
with experimental observations. Therefore, a precise identi�cation of critical gradients both
experimentally and theoretically is of great importance in the study of the instability and
the turbulent transport.

The ETG driven instability and turbulent transport in toroidal plasmas are studied with
gyrokinetic theory in this work. The full electron kinetics is considered. The behavior of the
modes and the transport in the parameter regimes close to the threshold of the instability
are emphasized.

2. Physical models and eigenmode equations

An axis symmetric toroidal geometry with circular ux surfaces is employed. The cur-
vature and magnetic gradient e�ects !D(v

2
?; v

2
k; �) of electrons are included. The ballooning
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representation is used. The full electron transit kkvk and �nite Larmor radius e�ects are re-
tained. Electron bouncing is neglected and ion response is adiabatic. The integral dispersion
equation for low �(= plasma pressure/magnetic pressure) plasmas obtained from Poisson's
equation is as follows: [2]"
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where b�(k) is the extended Fourier component (in ballooning space) of the perturbed poten-
tial ~�, and
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g(�; �0) = (bs+ 1)(sin � � sin �0)� bs(� cos � � �0 cos �0);
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k2? = k2� [1 + (bs�)2]; k02? = k2� [1 + (bs�0)2];
!���e = cTek�

eBLn

; �n =
Ln

R
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;

The quantities k; k0 and k� are normalized to ��1e = 
e=vte = eB=c
p
2Teme. Ij is the mod-

i�ed Bessel function of order j = 0; 1. Ln is the density gradient scale length, LTe is the
electron temperature gradient scale length, q is the safety factor, and bs = rdq=qdr is the mag-
netic shear. The third term on the left side of Eq. (1) represents the Debye shielding e�ect,
which is signi�cant for short wavelength modes of k?�D >� 1, with �D being the Debye length.

3. Numerical Results

The integral equation, Eq. (1), has to be solved numerically. The procedure for solving
such equations is well documented and the computer code HD7 [2] for solving the equations
is upgraded by introducing a new integration scheme in this work. The integration over �
in Eq. (2) does not converge for damped modes with negative growth rate if it is performed
along the real axis. This is in line physically with the causality condition . On the other
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hand, however, it is proved in Ref. [3] that an analytical continuation of the integration into
a complex � -plane will not change the results of the integration and allows it to converge for
a negative growth rate.

For the numerical results given in this work, we transform the real � integration into an
integration in a complex � -plane with [3]

� =

(�(1 + ij!js)s; !r > 0;
�(1� ij!js)s; !r < 0;

(3)

where s (0 � s <1) is a real integration variable.
The new numerical scheme allows not only the growing modes but also the damping

modes to be investigated. Therefore, the critical gradients are calculated with precision,
for the �rst time, without extrapolation. The parameters for the numerical results given
here are bs = 1; q = 1:5; �i = 1; ds = 
2

e=!
2
pe = 0 and �n = 0:2 unless otherwise stated.

A. Critical gradient versus temperature ratio
Given in Fig. 1 are the maximum growth rate of the mode (with respect to k�) (a) (for
�i = Te=Ti = 0.5, 0.75, 1, 1.5, 2, 3, 4 and 5) and the critical gradient (R=LTe)

ct (b) versus �e
and �i, respectively.
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FIG.1. Maximum growth rate (a) and critical gradient (b) versus �e and �i.

It is explicit that, in the stability boundary region, the maximum growth rate is an o�set
linear function of �e,

max = �1(�i)!���e(�e � �cte ) = �1(�i)!���e�n[ R
LTe

� (
R

LTe

)ct]: (4)

The relation of (R=LTe)
ct versus �i shown in Fig. 1(b) may be approximated as

(
R

LTe

)ct =

(
3:5 + 1:07�i + 0:5� 2i ; 0:5 � �i � 1:5;
2:35 + 2:59�i; 1:5 � �i � 5:0:

(5)
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The function �1(�i) with the other parameters �xed is given in Fig. 2, where the points are
numerical results while the curve is from the �tting function,

�1 =
1

0:0173� 2i + 1:95�i + 1; 18
: (6)

The �tting is excellent.
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FIG.2. Proportionality factor �1 versus �i.

B. Critical gradient versus toroidicity
The same threshold gradient searching is performed for varying �n and �xed �i' as was done
above for a �xed �n and varying �i. The maximum growth rate may also be presented as

max =
�2(�n)

�n
!���e(�e � �cee ) = �2(�n)!���e[ R

LTe

� (
R

LTe

)ce]: (7)
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FIG. 3. Critical gradient parameters �cee (a) and ( R
LTe

)ce (b) versus �n.

The critical gradient parameters �cee and ( R
LTe

)ce obtained are shown in Fig. 3 for �i = 3
(small open circles), 2 (large open circles), 1 (closed circles) and 1/3 (triangles). Here, the
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points are the numerical results and the curves are from the �tting functions,

�cee =

8>>><>>>:
4:688�2n � 0:5218�n + 0:7855; �i =

1
3
;

4:607�2n + 1:747�n + 0:5525; �i = 1;
2:104�2n + 6:346�n + 0:1985; �i = 2;
0:679�2n + 10:09�n � 0:0040; �i = 3;

(8)

and

(
R

LTe

)ce =
�cee
�n

; (9)

with �cee given by Eq. (8). The proportionality factor �2(�n) is given in Fig. 4, where the
points are from the numerical results while the curves are from the �tting function,

�2(�n) =

8>>><>>>:
1:039�n � 0:0780; �i =

1
3
;

0:432�n � 0:0182; �i = 1;
0:253�n � 0:0101; �i = 2;
0:176�n � 0:0076; �i = 3:

(10)
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FIG. 4. Proportionallity factor �2 versus �n.

4. Conclusion and discussion
The experimental studies of electron transport were reviewed in Ref. [1], where the thresh-
olds (R=LTe)

c from seven tokamaks (COMPASS-D, RTP, TCV, FT-U, AUG, Tore Supra
and JET) were reported to be between 8 and 12. The values given in Figs. 1 and 3 are
lower and close to the experimental observations except for very high �i(> 4). In particular,
the experiments on ASDEX-Upgrade clearly show that there is a threshold of electron tem-
perature gradient (rTe)c above which the transport increases strongly to keep the pro�les
close to (rTe=Te)c. (The experimentally measured sti�ness of the pro�les is a consequence
of this fact.) In addition, the experimentally measured critical gradient is (rTe=Te)c � 6=m.
[1] Considering that the major radius of the device is 1.65 m, we get (R=LTe)

c � 9:9, which
corresponds to �i � 3 in Fig. 1, where we take �n = 0:2; q = 1:5; and bs = 1:0. Meanwhile,
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the threshold (R=LTe)
c � 9:9 corresponds to �n < 0:1 and �n <� 0:2 in Fig. 3 for �i < 3

and �i � 3, respectively. Similarly, in the case of Tore Supra, the experiments indicate that
(R=LTe)

c � 12 for bs=q � 0:67 [1]. This also corresponds to �i � 3:7 in Fig. 1 and �i > 3
in Fig. 3. Because the parameters �n; q; �i and bs for the experiments are not available, we
do not attempt to claim the agreement of our results with the experiments. However, the
fact that the theoretical results fall right inside the range of experimental observations is
certainly not coincidental. At least, this is strong support for the claim that the turbulence
and turbulent transport observed in the experiments are driven by the toroidal ETG modes.

Substituting Eq. (6) into Eq. (4), we have

max ' 0:38
ckmax

� Ti
eBR

[
R

LTe

� (
R

LTe

)ct]: (11)

The experimental data from Ref. [1] clearly indicate that the normalized electron thermal
di�usivity �e=T

1:5
e versus (rTe=Te) exhibits universal behavior for plasmas under di�erent

discharge conditions. Here, the factor 1=T 1:5
e cancels the gyro-Bohm scaling of �e with Te.

Therefore, the mixing length estimation for the transport, �e � max�2, seems a good
approximation since the universality of �e=T

1:5
e observed in the experiments is nothing but

that of max given in Eqs (4) and (9). On the other hand, assuming � � c=!pe � 1=kmax
� ,

we may get

�e � DB

0:0173� 2i + 1:95�i + 1; 18

c

!pe
[
1

LTe

� (
1

LTe

)ct]F(�n; bs; q); (12)

for LT � Lct
Te with

DB =
cTe
eB

and F(�n; bs; q)
being the di�usion coeÆcient de�ned by Bohm and an order unity function of the rest
parameters, respectively.

Similar results for �e may also be obtained from Eqs (7) and (10).
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